ترغب بنشر مسار تعليمي؟ اضغط هنا

Figuring out Actors in Text Streams: Using Collocations to establish Incremental Mind-maps

162   0   0.0 ( 0 )
 نشر من قبل Christoph Schommer
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The recognition, involvement, and description of main actors influences the story line of the whole text. This is of higher importance as the text per se represents a flow of words and expressions that once it is read it is lost. In this respect, the understanding of a text and moreover on how the actor exactly behaves is not only a major concern: as human beings try to store a given input on short-term memory while associating diverse aspects and actors with incidents, the following approach represents a virtual architecture, where collocations are concerned and taken as the associative completion of the actors acting. Once that collocations are discovered, they become managed in separated memory blocks broken down by the actors. As for human beings, the memory blocks refer to associative mind-maps. We then present several priority functions to represent the actual temporal situation inside a mind-map to enable the user to reconstruct the recent events from the discovered temporal results.

قيم البحث

اقرأ أيضاً

For human beings, the processing of text streams of unknown size leads generally to problems because e.g. noise must be selected out, information be tested for its relevance or redundancy, and linguistic phenomenon like ambiguity or the resolution of pronouns be advanced. Putting this into simulation by using an artificial mind-map is a challenge, which offers the gate for a wide field of applications like automatic text summarization or punctual retrieval. In this work we present a framework that is a first step towards an automatic intellect. It aims at assembling a mind-map based on incoming text streams and on a subject-verb-object strategy, having the verb as an interconnection between the adjacent nouns. The mind-maps performance is enriched by a pronoun resolution engine that bases on the work of D. Klein, and C. D. Manning.
Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the {em computational lat ency} (synthesizing time), which grows linearly with the sentence length even with parallel approaches, and (b) the {em input latency} in scenarios where the input text is incrementally generated (such as in simultaneous translation, dialog generation, and assistive technologies). To reduce these latencies, we devise the first neural incremental TTS approach based on the recently proposed prefix-to-prefix framework. We synthesize speech in an online fashion, playing a segment of audio while generating the next, resulting in an $O(1)$ rather than $O(n)$ latency.
Previous research has demonstrated that Distributional Semantic Models (DSMs) are capable of reconstructing maps from news corpora (Louwerse & Zwaan, 2009) and novels (Louwerse & Benesh, 2012). The capacity for reproducing maps is surprising since DS Ms notoriously lack perceptual grounding (De Vega et al., 2012). In this paper we investigate the statistical sources required in language to infer maps, and resulting constraints placed on mechanisms of semantic representation. Study 1 brings word co-occurrence under experimental control to demonstrate that direct co-occurrence in language is necessary for traditional DSMs to successfully reproduce maps. Study 2 presents an instance-based DSM that is capable of reconstructing maps independent of the frequency of co-occurrence of city names.
Extracting location names from informal and unstructured social media data requires the identification of referent boundaries and partitioning compound names. Variability, particularly systematic variability in location names (Carroll, 1983), challen ges the identification task. Some of this variability can be anticipated as operations within a statistical language model, in this case drawn from gazetteers such as OpenStreetMap (OSM), Geonames, and DBpedia. This permits evaluation of an observed n-gram in Twitter targeted text as a legitimate location name variant from the same location-context. Using n-gram statistics and location-related dictionaries, our Location Name Extraction tool (LNEx) handles abbreviations and automatically filters and augments the location names in gazetteers (handling name contractions and auxiliary contents) to help detect the boundaries of multi-word location names and thereby delimit them in texts. We evaluated our approach on 4,500 event-specific tweets from three targeted streams to compare the performance of LNEx against that of ten state-of-the-art taggers that rely on standard semantic, syntactic and/or orthographic features. LNEx improved the average F-Score by 33-179%, outperforming all taggers. Further, LNEx is capable of stream processing.
Neural networks have recently achieved human-level performance on various challenging natural language processing (NLP) tasks, but it is notoriously difficult to understand why a neural network produced a particular prediction. In this paper, we leve rage the text-to-text framework proposed by Raffel et al.(2019) to train language models to output a natural text explanation alongside their prediction. Crucially, this requires no modifications to the loss function or training and decoding procedures -- we simply train the model to output the explanation after generating the (natural text) prediction. We show that this approach not only obtains state-of-the-art results on explainability benchmarks, but also permits learning from a limited set of labeled explanations and transferring rationalization abilities across datasets. To facilitate reproducibility and future work, we release our code use to train the models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا