ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling study of cavity grade Nb: possible magnetic scattering at the surface

108   0   0.0 ( 0 )
 نشر من قبل Thomas Proslier
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Proslier




اسأل ChatGPT حول البحث

Tunneling spectroscopy was performed on Nb pieces prepared by the same processes used to etch and clean superconducting radio frequency (SRF) cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap delta=1.55 meV, characteristic of clean, bulk Nb. However the tunneling density of states (DOS) was broadened significantly. The Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities, reveal a sharper DOS. Good fits to the DOS were obtained using Shiba theory, suggesting that magnetic scattering of quasiparticles is the origin of the gapless surface superconductivity and a heretofore unrecognized contributor to the Q-slope problem of Nb SRF cavities.



قيم البحث

اقرأ أيضاً

Nb$_{3}$Sn is a superconductor of great relevance for perspective RF applications. We present for the first time surface impedance $Z_s$ measurements at 15 GHz and low RF field amplitude on Nb$_{3}$Sn in high magnetic fields up to 12 T, with the aim of increasing the knowledge of Nb$_{3}$Sn behavior in such conditions. $Z_s$ is a fundamental material parameter that directly gives useful information about the dissipative and reactive phenomena when the superconductor is subjected to high-frequency excitations. Therefore, we present an analysis of the measured $Z_s$ with the aim of extracting interesting data about pinning in Nb$_{3}$Sn at high frequencies. From $Z_s$ we extract the vortex motion complex resistivity to obtain the $r$-parameter and the depinning frequency $ u_p$ in high magnetic fields. The comparison of the results with the literature shows that the measured $ u_p$ on bulk Nb$_{3}$Sn is several times greater than that of pure Nb. This demonstrates how Nb$_{3}$Sn can be a good candidate for RF technological applications, also in high magnetic fields.
125 - C. Cao , R. Tao , D. C. Ford 2015
High purity niobium (Nb), subjected to the processing methods used in the fabrication of superconducting RF cavities, displays micron-sized surface patches containing excess carbon. High-resolution transmission electron microscopy and electron energy -loss spectroscopy measurements are presented which reveal the presence of nanoscale NbC coherent precipitates in such regions. Raman backscatter spectroscopy on similar surface regions exhibit spectra consistent with the literature results on bulk NbC but with significantly enhanced two-phonon scattering. The unprecedented strength and sharpness of the two-phonon signal has prompted a theoretical analysis, using density functional theory (DFT), of phonon modes in NbC for two different interface models of the coherent precipitate. One model leads to overall compressive strain and a comparison to ab-initio calculations of phonon dispersion curves under uniform compression of the NbC shows that the measured two-phonon peaks are linked directly to phonon anomalies arising from strong electron-phonon interaction. Another model of the extended interface between Nb and NbC, studied by DFT, gives insight into the frequency shifts of the acoustic and optical mode density of states measured by first order Raman. The exact origin of the stronger two-phonon response is not known at present but it suggests the possibility of enhanced electron-phonon coupling in transition metal carbides under strain found either in the bulk NbC inclusions or at their interfaces with Nb metal. Preliminary tunneling studies using a point contact method show some energy gaps larger than expected for bulk NbC.
We apply high resolution scanning tunneling microscopy to study intrinsic defect states of bulk FeSe. Four types of intrinsic defects including the type I dumbbell, type II dumbbell, top-layer Se vacancy and inner-layer Se-site defect are extensively analyzed by scanning tunneling spectroscopy. From characterized depression and enhancement of density of states measured in a large energy range, the type I dumbbell and type II dumbbell are determined to be the Fe vacancy and Se$_mathrm{Fe}$ defect, respectively. The top-layer Se vacancy and possible inner-layer Se-site vacancy are also determined by spectroscopy analysis. The determination of defects are compared and largely confirmed in the annular dark-field scanning transmission electron microscopy measurement of the exfoliated FeSe. The detailed mapping of defect states in our experiment lays the foundation for a comparison with complex theoretical calculations in the future.
We have used spin-polarized neutron reflectometry to investigate the magnetization profile of superlattices composed of ferromagnetic Gd and superconducting Nb layers. We have observed a partial suppression of ferromagnetic (F) order of Gd layers in [Gd($d_F$)/Nb(25nm)]$_{12}$ superlattices below the superconducting (S) transition of the Nb layers. The amplitude of the suppression decreases with increasing $d_F$. By analyzing the neutron spin asymmetry we conclude that the observed effect has an electromagnetic origin - the proximity-coupled S layers screen out the external magnetic field and thus suppress the F response of the Gd layers inside the structure. Our investigation demonstrates the considerable influence of electromagnetic effects on the magnetic properties of S/F systems.
The physics of the $pi$ phase shift in ferromagnetic Josephson junctions may enable a range of applications for spin-electronic devices and quantum computing. We investigate transitions from ``0 to ``$pi$ states in Nb/Fe/Nb Josephson junctions by var ying the Fe barrier thickness from 0.5 nm to 5.5 nm. From magnetic measurements we estimate for Fe a magnetic dead layer of about 1.1 nm. By fitting the characteristic voltage oscillations with existing theoretical models we extrapolate an exchange energy of 256 meV, a Fermi velocity of $1.98 times 10^5$ m/s and an electron mean free path of 6.2 nm, in agreement with other reported values. From the temperature dependence of the $I_CR_N$ product we show that its decay rate exhibits a nonmonotonic oscillatory behavior with the Fe barrier thickness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا