ﻻ يوجد ملخص باللغة العربية
We present the most extensive and complete study of the properties for the largest sample (46 objects) of gamma-ray burst (GRB) host galaxies. The redshift interval and the mean redshift of the sample are 0<z<6.3 and z=0.96 (look-back time: 7.2 Gyr), respectively; 89% of the hosts are at z <~ 1.6. Optical-near-infrared (NIR) photometry and spectroscopy are used to derive stellar masses, star formation rates (SFRs), dust extinctions and metallicities. The average stellar mass is 10^9.3 M_sun, with a 1 sigma dispersion of 0.8 dex. The average metallicity for a subsample of 17 hosts is about 1/6 solar and the dust extinction in the visual band (for a subsample of 10 hosts) is A_V=0.5. We obtain new relations to derive SFR from [OII] or UV fluxes, when Balmer emission lines are not available. SFRs, corrected for dust extinction, aperture-slit loss and stellar Balmer absorption are in the range 0.01-36 M_sun yr^-1. The median SFR per unit stellar mass (specific SFR) is 0.8 Gyr^-1. Equivalently the inverse quantity, the median formation timescale is 1.3 Gyr. Most GRBs are associated with the death of young massive stars, more common in star-forming galaxies. Therefore GRBs are an effective tool to detect star-forming galaxies in the universe. Star-forming galaxies at z<1.6 are a faint and low-mass population, hard to detect by conventional optical-NIR surveys, unless a GRB event occurs. There is no compelling evidence that GRB hosts are peculiar galaxies. More data on the subclass of short GRB are necessary to establish the nature of their hosts.
Gamma Ray Bursts are detectable in the gamma-ray band if their jets are oriented towards the observer. However, for each GRB with a typical theta_jet, there should be ~2/theta_jet^2 bursts whose emission cone is oriented elsewhere in space. These off
Gamma Ray Bursts (GRBs) are a powerful probe of the high redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reprod
We study the properties of the population of optically dark events present in a carefully selected complete sample of bright Swift long gamma-ray bursts. The high level of completeness in redshift of our sample (52 objects out of 58) allow us to esta
The redshift distribution of the short-duration GRBs is a crucial, but currently fragmentary, clue to the nature of their progenitors. Here we present optical observations of nine short GRBs obtained with Gemini, Magellan, and the Hubble Space Telesc
Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and he