ترغب بنشر مسار تعليمي؟ اضغط هنا

Accessing the population of high redshift Gamma Ray Bursts

134   0   0.0 ( 0 )
 نشر من قبل Giancarlo Ghirlanda
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma Ray Bursts (GRBs) are a powerful probe of the high redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and gamma-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Ep-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence of ~10^-8 erg cm^-2, is expected to detect ~40 GRBs yr^-1 sr^-1 at z>5 (~3 GRBs yr^-1 sr^-1 at z>10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe.



قيم البحث

اقرأ أيضاً

111 - E. Berger , D.B. Fox , P.A. Price 2006
The redshift distribution of the short-duration GRBs is a crucial, but currently fragmentary, clue to the nature of their progenitors. Here we present optical observations of nine short GRBs obtained with Gemini, Magellan, and the Hubble Space Telesc ope. We detect the afterglows and host galaxies of two short bursts, and host galaxies for two additional bursts with known optical afterglow positions, and five with X-ray positions (<6 radius). In eight of the nine cases we find that the most probable host galaxies are faint, R~23-26.5 mag, and are therefore starkly different from the first few short GRB hosts with R~17-22 mag and z<0.5. Indeed, we measure spectroscopic redshifts of z~0.4-1.1 for the four brightest hosts. A comparison to large field galaxy samples, as well as the hosts of long GRBs and previous short GRBs, indicates that the fainter hosts likely reside at z>1. Our most conservative limit is that at least half of the five hosts without a known redshift reside at z>0.7 (97% confidence level), suggesting that about 1/3-2/3 of all short GRBs originate at higher redshifts than previously determined. This has two important implications: (i) We constrain the acceptable age distributions to a wide lognormal (sigma>1) with tau~4-8 Gyr, or to a power law, P(tau)~tau^n, with -1<n<0; and (ii) the inferred isotropic energies, E_{gamma,iso}~10^50-10^52 erg, are significantly larger than ~10^48-10^49 erg for the low redshift short GRBs, indicating a large spread in energy release or jet opening angles. Finally, we re-iterate the importance of short GRBs as potential gravitational wave sources and find a conservative Advanced LIGO detection rate of ~2-6 yr^-1.
Gamma Ray Bursts are detectable in the gamma-ray band if their jets are oriented towards the observer. However, for each GRB with a typical theta_jet, there should be ~2/theta_jet^2 bursts whose emission cone is oriented elsewhere in space. These off -axis bursts can be eventually detected when, due to the deceleration of their relativistic jets, the beaming angle becomes comparable to the viewing angle. Orphan Afterglows (OA) should outnumber the current population of bursts detected in the gamma-ray band even if they have not been conclusively observed so far at any frequency. We compute the expected flux of the population of orphan afterglows in the mm, optical and X-ray bands through a population synthesis code of GRBs and the standard afterglow emission model. We estimate the detection rate of OA by on-going and forthcoming surveys. The average duration of OA as transients above a given limiting flux is derived and described with analytical expressions: in general OA should appear as daily transients in optical surveys and as monthly/yearly transients in the mm/radio band. We find that ~ 2 OA yr^-1 could already be detected by Gaia and up to 20 OA yr^-1 could be observed by the ZTF survey. A larger number of 50 OA yr^-1 should be detected by LSST in the optical band. For the X-ray band, ~ 26 OA yr^-1 could be detected by the eROSITA. For the large population of OA detectable by LSST, the X-ray and optical follow up of the light curve (for the brightest cases) and/or the extensive follow up of their emission in the mm and radio band could be the key to disentangle their GRB nature from other extragalactic transients of comparable flux density.
We study the properties of the population of optically dark events present in a carefully selected complete sample of bright Swift long gamma-ray bursts. The high level of completeness in redshift of our sample (52 objects out of 58) allow us to esta blish the existence of a genuine dark population and we are able to estimate the maximum fraction of dark burst events (~30%) expected for the whole class of long gamma-ray burst. The redshift distribution of this population of dark bursts is similar to the one of the whole sample. Interestingly, the rest-frame X-ray luminosity (and the de-absorbed X-ray flux) of the sub-class of dark bursts is slightly higher than the average luminosity of the non-dark events. At the same time the prompt properties do not differ and the optical flux of dark events is at the lower tail of the optical flux distribution, corrected for Galactic absorption. All these properties suggest that dark bursts events generate in much denser environments with respect to normal bright events. We can therefore exclude the high-z and the low-density scenarios and conclude that the major cause of the origin of optically dark events is the dust extinction.
High-redshift gamma-ray bursts have several advantages for the study of the distant universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of the class of such distant events. We present the multi-wavelength analysis of the high-$z$ Swift gamma-ray burst GRB140515A ($z = 6.327$). The best estimate of the neutral hydrogen fraction of the intergalactic medium (IGM) towards the burst is $x_{HI} leq 0.002$. The spectral absorption lines detected for this event are the weakest lines ever observed in gamma-ray burst afterglows, suggesting that GRB140515A exploded in a very low density environment. Its circum-burst medium is characterised by an average extinction (A$_{rm V} sim 0.1$) that seems to be typical of $z ge 6$ events. The observed multi-band light curves are explained either with a very flat injected spectrum ($p = 1.7$) or with a multi-component emission ($p = 2.1$). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB140515A from a Pop III (or from a Pop II stars with local environment enriched by Pop III) massive star is unlikely.
The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; $E_gamma > $100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before re aching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For 5 bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of $la$10 hours.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا