ترغب بنشر مسار تعليمي؟ اضغط هنا

Separately contacted edge states at high imbalance in the integer and fractional quantum Hall effect regime

103   0   0.0 ( 0 )
 نشر من قبل Eduard V. Deviatov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This review presents experimental results on the inter-edge-state transport in the quantum Hall effect, mostly obtained in the regime of high imbalance. The application of a special geometry makes it possible to perform I-V spectroscopy between individual edge channels in both the integer and the fractional regime. This makes it possible to study in detail a number of physical effects such as the creation of topological defects in the integer quantum Hall effect and neutral collective modes excitation in fractional regime. The while many of the experimental findings are well explained within established theories of the quantum Hall effects, a number of observations give new insight into the local structure at the sample edge, which can serve as a starting point for further theoretical studies.

قيم البحث

اقرأ أيضاً

We measure the conductance of a quantum point contact (QPC) while the biased tip of a scanning probe microscope induces a depleted region in the electron gas underneath. At finite magnetic field we find plateaus in the real-space maps of the conducta nce as a function of tip position at integer ( u=1,2,3,4,6,8) and fractional ( u=1/3,2/3,5/3,4/5) values of transmission. They resemble theoretically predicted compressible and incompressible stripes of quantum Hall edge states. The scanning tip allows us to shift the constriction limiting the conductance in real space over distances of many microns. The resulting stripes of integer and fractional filling factors are rugged on the micron scale, i.e. on a scale much smaller than the zero-field elastic mean free path of the electrons. Our experiments demonstrate that microscopic inhomogeneities are relevant even in high-quality samples and lead to locally strongly fluctuating widths of incompressible regions even down to their complete suppression for certain tip positions. The macroscopic quantization of the Hall resistance measured experimentally in a non-local contact configuration survives in the presence of these inhomogeneities, and the relevant local energy scale for the u=2 state turns out to be independent of tip position.
An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively couple d to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time $tau_phi(T)$ of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In the presence of a smooth confining potential it was hitherto believed that this picture may only be partially modified by the appearance of additional counterpropagating integer-charge modes. Here, we demonstrate the breakdown of this paradigm: The system favors the formation of edge modes supporting fractional excitations. This accounts for previous observations, and leads to additional predictions amenable to experimental tests.
In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are character ized by non-Abelian statistics of their quasiparticles. Here we focus on conditions for their realization and competition among them at half-integer filling factors. Using the Dirac composite fermion description, in the presence of a mass term, we study the influence of Landau level mixing in selecting a particular Pfaffian state. While Pfaffian and anti-Pfaffian are selected when Landau level mixing is not strong, and can be taken into account perturbatively, the PH Pfaffian state requires non-perturbative inclusion of at least two Landau levels. Our findings, for small Landau level mixing, are in accordance with numerical investigations in the literature, and call for a non-perturbative approach in the search for PH Pfaffian correlations. We demonstrated that a method based on the Chern-Simons field-theoretical approach can be used to generate characteristic interaction pseudo-potentials for Pfaffian paired states.
Since the charged mode is much faster than the neutral modes on quantum Hall edges at large filling factors, the edge may remain out of equilibrium in thermal conductance experiments. This sheds light on the observed imperfect quantization of the the rmal Hall conductance at $ u=8/3$ and can increase the observed thermal conductance by two quanta at $ u=8/5$. Under certain unlikely but not impossible assumptions, this might also reconcile the observed thermal conductance at $ u=5/2$ with not only the PH-Pfaffian order but also the anti-Pfaffian order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا