ﻻ يوجد ملخص باللغة العربية
This review presents experimental results on the inter-edge-state transport in the quantum Hall effect, mostly obtained in the regime of high imbalance. The application of a special geometry makes it possible to perform I-V spectroscopy between individual edge channels in both the integer and the fractional regime. This makes it possible to study in detail a number of physical effects such as the creation of topological defects in the integer quantum Hall effect and neutral collective modes excitation in fractional regime. The while many of the experimental findings are well explained within established theories of the quantum Hall effects, a number of observations give new insight into the local structure at the sample edge, which can serve as a starting point for further theoretical studies.
We measure the conductance of a quantum point contact (QPC) while the biased tip of a scanning probe microscope induces a depleted region in the electron gas underneath. At finite magnetic field we find plateaus in the real-space maps of the conducta
An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively couple
Protected edge modes are the cornerstone of topological states of matter. The simplest example is provided by the integer quantum Hall state at Landau level filling unity, which should feature a single chiral mode carrying electronic excitations. In
In this review the physics of Pfaffian paired states, in the context of fractional quantum Hall effect, is discussed using field-theoretical approaches. The Pfaffian states are prime examples of topological ($p$-wave) Cooper pairing and are character
Since the charged mode is much faster than the neutral modes on quantum Hall edges at large filling factors, the edge may remain out of equilibrium in thermal conductance experiments. This sheds light on the observed imperfect quantization of the the