ﻻ يوجد ملخص باللغة العربية
By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.
Our work is concerned with the generation and targeted design of RNA, a type of genetic macromolecule that can adopt complex structures which influence their cellular activities and functions. The design of large scale and complex biological structur
Genome-wide epistasis analysis is a powerful tool to infer gene interactions, which can guide drug and vaccine development and lead to a deeper understanding of microbial pathogenesis. We have considered all complete SARS-CoV-2 genomes deposited in t
Cell type (e.g. pluripotent cell, fibroblast) is the end result of many complex processes that unfold due to evolutionary, developmental, and transformational stimuli. A cells phenotype and the discrete, a priori states that define various cell subty
This paper develops a formulation of the quasispecies equations appropriate for polysomic, semiconservatively replicating genomes. This paper is an extension of previous work on the subject, which considered the case of haploid genomes. Here, we deve
Given a random RNA secondary structure, $S$, we study RNA sequences having fixed ratios of nuclotides that are compatible with $S$. We perform this analysis for RNA secondary structures subject to various base pairing rules and minimum arc- and stack