ترغب بنشر مسار تعليمي؟ اضغط هنا

RNA secondary structures having a compatible sequence of certain nucleotide ratios

110   0   0.0 ( 0 )
 نشر من قبل Thomas Li
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a random RNA secondary structure, $S$, we study RNA sequences having fixed ratios of nuclotides that are compatible with $S$. We perform this analysis for RNA secondary structures subject to various base pairing rules and minimum arc- and stack-length restrictions. Our main result reads as follows: in the simplex of the nucleotide ratios there exists a convex region in which, in the limit of long sequences, a random structure a.a.s.~has compatible sequence with these ratios and outside of which a.a.s.~a random structure has no such compatible sequence. We localize this region for RNA secondary structures subject to various base pairing rules and minimum arc- and stack-length restrictions. In particular, for {bf GC}-sequences having a ratio of {bf G} nucleotides smaller than $1/3$, a random RNA secondary structure without any minimum arc- and stack-length restrictions has a.a.s.~no such compatible sequence. For sequences having a ratio of {bf G} nucleotides larger than $1/3$, a random RNA secondary structure has a.a.s. such compatible sequences. We discuss our results in the context of various families of RNA structures.



قيم البحث

اقرأ أيضاً

In this paper we study properties of topological RNA structures, i.e.~RNA contact structures with cross-serial interactions that are filtered by their topological genus. RNA secondary structures within this framework are topological structures having genus zero. We derive a new bivariate generating function whose singular expansion allows us to analyze the distributions of arcs, stacks, hairpin- , interior- and multi-loops. We then extend this analysis to H-type pseudoknots, kissing hairpins as well as $3$-knots and compute their respective expectation values. Finally we discuss our results and put them into context with data obtained by uniform sampling structures of fixed genus.
Recently several minimum free energy (MFE) folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Their folding targets are interaction structures, that can be represented as diagrams with two backb ones drawn horizontally on top of each other such that (1) intramolecular and intermolecular bonds are noncrossing and (2) there is no zig-zag configuration. This paper studies joint structures with arc-length at least four in which both, interior and exterior stack-lengths are at least two (no isolated arcs). The key idea in this paper is to consider a new type of shape, based on which joint structures can be derived via symbolic enumeration. Our results imply simple asymptotic formulas for the number of joint structures with surprisingly small exponential growth rates. They are of interest in the context of designing prediction algorithms for RNA-RNA interactions.
A topological RNA structure is derived from a diagram and its shape is obtained by collapsing the stacks of the structure into single arcs and by removing any arcs of length one. Shapes contain key topological, information and for fixed topological g enus there exist only finitely many such shapes. We shall express topological RNA structures as unicellular maps, i.e. graphs together with a cyclic ordering of their half-edges. In this paper we prove a bijection of shapes of topological RNA structures. We furthermore derive a linear time algorithm generating shapes of fixed topological genus. We derive explicit expressions for the coefficients of the generating polynomial of these shapes and the generating function of RNA structures of genus $g$. Furthermore we outline how shapes can be used in order to extract essential information of RNA structure databases.
In this paper we analyze the length-spectrum of rainbows in RNA secondary structures. A rainbow in a secondary structure is a maximal arc with respect to the partial order induced by nesting. We show that there is a significant gap in this length-spe ctrum. We shall prove that there asymptotically almost surely exists a unique longest rainbow of length at least $n-O(n^{1/2})$ and that with high probability any other rainbow has finite length. We show that the distribution of the length of the longest rainbow converges to a discrete limit law and that, for finite $k$, the distribution of rainbows of length $k$, becomes for large $n$ a negative binomial distribution. We then put the results of this paper into context, comparing the analytical results with those observed in RNA minimum free energy structures, biological RNA structures and relate our findings to the sparsification of folding algorithms.
We show the expected order of RNA saturated secondary structures of size $n$ is $log_4n(1+O(frac{log_2n}{n}))$, if we select the saturated secondary structure uniformly at random. Furthermore, the order of saturated secondary structures is sharply co ncentrated around its mean. As a consequence saturated structures and structures in the traditional model behave the same with respect to the expected order. Thus we may conclude that the traditional model has already drawn the right picture and conclusions inferred from it with respect to the order (the overall shape) of a structure remain valid even if enforcing saturation (at least in expectation).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا