ﻻ يوجد ملخص باللغة العربية
We present point-contact spectroscopy data for junctions between a normal metal and the newly discovered F-doped superconductor LaO$_{0.9}$F$_{0.1-delta}$FeAs (F-LaOFeAs). A zero-bias conductance peak was observed and its shape and magnitude suggests the presence of Andreev bound states at the surface of F-LaOFeAs, which provides a possible evidence of an unconventional pairing symmetry with a nodal gap function. The maximum gap value $Delta_0approx3.9pm0.7$meV was determined from the measured spectra, in good agreement with the recent experiments on specific heat and lower critical field.
We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of about 54 T. A clear
We have performed 75As Nuclear Magnetic Resonance (NMR) measurements on aligned powders of the new LaO0.9F0.1FeAs superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice
We have studied the newly found superconductor compound LaO$_{1-x}$F$_x$FeAs through the first-principles density functional theory calculations. We find that the parent compound LaOFeAs is a quasi-2-dimensional antiferromgnetic semimetal with most c
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is obs
By using a two-step method, we successfully synthesized the iron based new superconductor LaFeAsO_{0.9}F_{0.1-delta}$. The resistive transition curves under different magnetic fields were measured, leading to the determination of the upper critical f