ﻻ يوجد ملخص باللغة العربية
By using a two-step method, we successfully synthesized the iron based new superconductor LaFeAsO_{0.9}F_{0.1-delta}$. The resistive transition curves under different magnetic fields were measured, leading to the determination of the upper critical field Hc2(T) of this new superconductor. The value of Hc2 at zero temperature is estimated to be about 50 Tesla roughly. In addition, the Hall effect and magnetoresistance were measured in wide temperature region. A negative Hall coefficient R_H has been found, implying a dominant conduction mainly by electron-like charge carriers in this material. The charge carrier density determined at 100 K is about 9.8E20cm^{-3}, which is close to the cuprate superconductors. It is further found that the magnetoresistance does not follow Kohlers law. Meanwhile, the different temperature dependence behaviors of resistivity, Hall coefficient, and magnetoresistance have anomalous properties at about 230 K, which may be induced by some exotic scattering mechanism.
We present point-contact spectroscopy data for junctions between a normal metal and the newly discovered F-doped superconductor LaO$_{0.9}$F$_{0.1-delta}$FeAs (F-LaOFeAs). A zero-bias conductance peak was observed and its shape and magnitude suggests
We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of about 54 T. A clear
To probe manifestations of multiband superconductivity in oxypnictides, we measured the angular dependence of the magnetic torque $tau(theta)$ in the mixed state of LaO$_{0.9}$F$_{0.1}$FeAs single crystals as a function of temperature $T$ and magneti
Nuclear magnetic resonance (NMR) measurements of an iron (Fe)-based superconductor LaFeAsO_{1-x}F_x (x = 0.08 and 0.14) were performed at ambient pressure and under pressure. The relaxation rate 1/T_1 for the overdoped samples (x = 0.14) shows T-line
We report resistivity and upper critical field B_c2(T) data for As deficient LaO_(0.9)F_(0.1)FeAs_(1-delta) in a wide temperature and high field range up to 60 T. These disordered samples exhibit a slightly enhanced superconducting transition at T_c