ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling the morpho-kinematic properties of a face-on merger at z~0.7

113   0   0.0 ( 0 )
 نشر من قبل Isaura Fuentes-Carrera
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At intermediate redshifts, many galaxies seem to be perturbed or suffering from an interaction. Considering that disk galaxies may have formed and evolved through minor mergers or through major mergers, it is important to understand the mechanisms at play during each type of merger in order to be able to establish the outcome of such an event. In some cases, only the use of both morphological and kinematical information can disentangle the actual configuration of an encounter at intermediate redshift. In this work, we present the morphological and kinematical analysis of a system at z=0.74 in order to understand its configuration, interacting stage and evolution. Using the integral field spectrograph GIRAFFE, long-slit spectroscopy by FORS2 and direct optical images from the HST-ACS and ISAAC near-infrared images, we disentangle the morphology of this system, its star-formation history and its extended kinematics in order to propose a possible configuration for the system. Numerical simulations are used to test different interacting scenarii. We identify this system as a face-on disk galaxy with a very bright bar in interaction with a smaller companion with a mass ratio of 3:1. The relevance of kinematical information and the constraints it imposes on the interpretation of the observations of distant galaxies is particularly strengthened in this case. This object is amongst the best example on how one may misinterpret morphology in the absence of kinematical information.

قيم البحث

اقرأ أيضاً

An $m=1$ lopsided asymmetry is common in disc galaxies. Here, we investigate the excitation of an $m=1$ lopsidedness in host galaxies during minor mergers (mass ratio 1:10) while choosing a set of minor merger models (with varying orbital configurati ons, morphology of the host galaxy) from the GalMer library of galaxy merger simulations. We show that a minor merger triggers a prominent $m=1$ lopsidedness in the stars of the host galaxy. The strength of the $m=1$ lopsidedness undergoes a transient amplification phase after each pericentre passage of the satellite, in concordance with past findings of excitation of an $m=1$ lopsidedness due to tidal encounters. However, once the merger happens, and the post-merger remnant readjusts itself, the lopsidedness fades away in short time-scale ($sim 500-850$ Myr). Furthermore, a delayed merger can drive a prolonged ($sim 2$ Gyr) lopsidedness in the host galaxy. We demonstrate that the $m=1$ lopsidedness rotates with a well-defined pattern speed. The measured pattern speed is much slower than the $m=2$ bar pattern speed, and is retrograde with respect to the bar. This gives rise to a dynamical scenario where the Inner Linblad resonance (ILR) of the $m=1$ lopsidedness falls in between the corotation (CR) and the Outer Linblad resonance (OLR) of the $m=2$ bar mode. A kinematic lopsidedness also arises in the host galaxy, and the resulting temporal variation closely follows that of the density lopsidedness. The minor merger also triggers a transient off-centred stellar disc-dark matter halo configuration due to the tidal encounter with the satellite.
80 - A. Danehkar 2021
The majority of planetary nebulae (PNe) show axisymmetric morphologies, whose causes are not well understood. In this work, we present spatially resolved kinematic observations of 14 Galactic PNe surrounding Wolf-Rayet ([WR]) and weak emission-line s tars ($wels$) based on the H$alpha$ and [N II] emission taken with the Wide Field Spectrograph on the ANU 2.3-m telescope. Velocity-resolved channel maps and position--velocity diagrams, together with archival Hubble Space Telescope ($HST$) and ground-based images, are employed to construct three-dimensional morpho-kinematic models of 12 objects using the program SHAPE. Our results indicate that these 12 PNe have elliptical morphologies with either open or closed outer ends. Kinematic maps also illustrate on-sky orientations of elliptically symmetric morphologies of the interior shells in NGC 6578 and NGC 6629, and the compact ($leq 6$ arcsec) PNe Pe1-1, M3-15, M1-25, Hen2-142, and NGC 6567, in agreement with the high-resolution $HST$ images containing morphological details. Point-symmetric knots in Hb4 exhibit deceleration with distance from the nebular center that could be due to shock collisions with the ambient medium. Velocity dispersion maps of Pe1-1 disclose point-symmetric knots similar to those in Hb4. Collimated outflows are also visible in the position--velocity diagrams of M3-30, M1-32, M3-15, and K2-16, which are reconstructed by tenuous prolate ellipsoids extending upwardly from thick toroidal shells in our models.
We compare the surface brightness-inclination relation for a sample of COSMOS pure disk galaxies at z~0.7 with an artificially redshifted sample of SDSS disks well matched to the COSMOS sample in terms of rest-frame photometry and morphology, as well as their selection and analysis. The offset between the average surface brightness of face-on and edge-on disks in the redshifted SDSS sample matches that predicted by measurements of the optical depth of galactic disks in the nearby universe. In contrast, large disks at z~0.7 have a virtually flat surface brightness-inclination relation, suggesting that they are more opaque than their local counterparts. This could be explained by either an increased amount of optically thick material in disks at higher redshift, or a different spatial distribution of the dust.
We study a sample of 28 S0 galaxies extracted from the integral-field spectroscopic (IFS) survey CALIFA. We combine an accurate two-dimensional (2D) multi-component photometric decomposition with the IFS kinematic properties of their bulges to unders tand their formation scenario. Our final sample is representative of S0s with high stellar masses ($M_{star}/M_{sun} > 10^{10}$). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements ($lambda$ and $v/sigma$). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge reprojected values of $lambda$ and $v/sigma$. We find that the photometric ($n$ and $B/T$) and kinematic ($v/sigma$ and $lambda$) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like vs classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipation processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.
MS$,$0451.6$-$0305 is a rich galaxy cluster whose strong lensing is particularly prominent at submm wavelengths. We combine new SCUBA-2 data with imaging from Herschel SPIRE and PACS and HST in order to try to understand the nature of the sources bei ng lensed. In the region of the giant submm arc, we uncover seven multiply imaged galaxies (up from the previously known three), of which six are found to be at a redshift of $zsim2.9$, and possibly constitute an interacting system. Using a novel forward-modelling approach, we are able to simultaneously deblend and fit SEDs to the individual galaxies that contribute to the giant submm arc, constraining their dust temperatures, far infrared luminosities and star formation rates. The submm arc first identified by SCUBA can now be seen to be composed of at least five distinct sources, four of these within the galaxy group at $zsim2.9$. The total unlensed luminosity for this galaxy group is $(3.1pm0.3) times 10^{12},mathrm{L}_odot$, which gives an unlensed star formation rate of $(450pm50)$ M$_odot$ yr$^{-1}$. From the properties of this system, we see no evidence of evolution towards lower temperatures in the dust temperature versus far-infrared luminosity relation for high redshift galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا