ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft X-ray spectroscopy of highly charged silicon ions in dense plasmas

267   0   0.0 ( 0 )
 نشر من قبل Guiyun Liang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rich soft X-ray emission lines of highly charged silicon ions (Si VI--Si XII) were observed by irradiating an ultra-intense laser pulse with width of 200 fs and energy of $sim$90 mJ on the solid silicon target. The high resolution spectra of highly charged silicon ions with full-width at half maximum (FWHM) of $sim$0.3--0.4AA is analyzed in wavelength range of 40--90 AA . The wavelengths of 53 prominent lines are determined with statistical uncertainties being up to 0.005 AA . Collisional-radiative models were constructed for Si VI -- Si XII ions, which satisfactorily reproduces the experimental spectra, and helps the line identification. Calculations at different electron densities reveal that the spectra of dense plasmas are more complicate than the spectra of thin plasmas. A comparison with the Kelly database reveals a good agreement for most peak intensities, and differences for a few emission lines.



قيم البحث

اقرأ أيضاً

A detailed level collisional-radiative model of the E1 transition spectrum of Ca-like W$^{54+}$ ion has been constructed. All the necessary atomic data has been calculated by relativistic configuration interaction (RCI) method with the implementation of Flexible Atomic Code (FAC). The results are in reasonable agreement with the available experimental and previous theoretical data. The synthetic spectrum has explained the EBIT spectrum in 29.5-32.5 AA ,, while several new strong transitions has been proposed to be observed in 18.5-19.6 AA , for the future EBIT experiment with electron density $n_e$ = $10^{12}$ cm$^{-3}$ and electron beam energy $E_e$ = 18.2 keV.
125 - P. Amaro 2012
We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describ e in detail the instrument and its performances. Furthermore, we present a few spectra of transitions in Ar$^{14+}$, Ar$^{15+}$ and Ar$^{16+}$. We have developed an ab initio simulation code that allows us to obtain accurate line profiles. It can reproduce experimental spectra with unprecedented accuracy. The quality of the profiles allows the direct determination of line width.
85 - D. Porquet 2002
The calculations of the ratios of the Helium-like ion X-ray lines from C V to Si XIII are revisited in order to apply the results to density, temperature and ionization process diagnostics of data from high-resolution spectroscopy of the new generati on of X-ray satellites: Chandra and XMM-Newton. Comparing to earlier computations, Porquet & Dubau (2000), the best experimental values are used for radiative transition probabilities. The influence of an external radiation field (photo-excitation), the contribution from unresolved dielectronic satellite lines and the optical depth are taken into account. These diagnostics could be applied to collision-dominated plasmas (e.g., stellar coronae), photo-ionized plasmas (e.g., ``Warm Absorber in AGNs), and transient plasmas (e.g., SNRs).
Uncertainties in atomic models will introduce noticeable additional systematics in calculating the flux of weak dielectronic recombination (DR) satellite lines, affecting the detection and flux measurements of other weak spectral lines. One important example is the Ar XVII He-beta DR, which is expected to be present in emission from the hot intracluster medium (ICM) of galaxy clusters and could impact measurements of the flux of the 3.5 keV line that has been suggested as a secondary emission from a dark matter interaction. We perform a set of experiments using the Lawrence Livermore National Laboratorys electron beam ion trap (EBIT-I) and the X-Ray Spectrometer quantum calorimeter (XRS/EBIT), to test the Ar XVII He-beta DR origin of the 3.5 keV line. We measured the X-ray emission following resonant DR onto helium-like and lithium-like Argon using EBIT-Is Maxwellian simulator mode at a simulated electron temperature of Te=1.74 keV. The measured flux of the Ar XVII He-beta DR lined is too weak to account for the flux in the 3.5 keV line assuming reasonable plasma parameters. We, therefore, rule out Ar XVII He-beta DR as a significant contributor to the 3.5 keV line. A comprehensive comparison between the atomic theory and the EBIT experiment results is also provided.
Precision spectroscopy of atomic systems is an invaluable tool for the advancement of our understanding of fundamental interactions and symmetries. Recently, highly charged ions (HCI) have been proposed for sensitive tests of physics beyond the Stand ard Model and as candidates for high-accuracy atomic clocks. However, the implementation of these ideas has been hindered by the parts-per-million level spectroscopic accuracies achieved to date. Here, we cool a trapped HCI to the lowest reported temperatures, and introduce coherent laser spectroscopy on HCI with an eight orders of magnitude leap in precision. We probe the forbidden optical transition in $^{40}$Ar$^{13+}$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor. Our work ultimately unlocks the potential of HCI, a large, ubiquitous atomic class, for quantum information processing, novel frequency standards, and highly sensitive tests of fundamental physics, such as searching for dark matter candidates or violations of fundamental symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا