ترغب بنشر مسار تعليمي؟ اضغط هنا

Standard Model couplings and collider signatures of a light scalar

445   0   0.0 ( 0 )
 نشر من قبل Andreas Ross
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The electroweak symmetry breaking (EWSB) sector of the Standard Model can be far richer and more interesting than the usual single scalar doublet model. We explore scenarios where the EWSB sector is nearly scale invariant and consequently gives rise to a light CP even scalar particle. The one-doublet SM is in that category, as are many other models with either weakly or strongly coupled sectors that trigger EWSB. We study the couplings of the light scalar to the SM particles that can arise from the explicit breaking of scale invariance focusing on the possible differences with the minimal SM. The couplings of the light scalar to light fermions, as well as to the massless gauge bosons, can be significantly enhanced. We find possible new discovery channels due to the decays of the conformal scalar into e^+e^- and mu^+mu^- pairs as well as new production channels via light quark annihilation.



قيم البحث

اقرأ أيضاً

This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising a t the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.
The high-energy scattering of massive electroweak bosons, known as vector boson scattering (VBS), is a sensitive probe of new physics. VBS signatures will be thoroughly and systematically investigated at the LHC with the large data samples available and those that will be collected in the near future. Searches for deviations from Standard Model (SM) expectations in VBS facilitate tests of the Electroweak Symmetry Breaking (EWSB) mechanism. Current state-of-the-art tools and theory developments, together with the latest experimental results, and the studies foreseen for the near future are summarized. A review of the existing Beyond the SM (BSM) models that could be tested with such studies as well as data analysis strategies to understand the interplay between models and the effective field theory paradigm for interpreting experimental results are discussed. This document is a summary of the EU COST network VBScan workshop on the sensitivity of VBS processes for BSM frameworks that took place December 4-5, 2019 at the LIP facilities in Lisbon, Portugal. In this manuscript we outline the scope of the workshop, summarize the different contributions from theory and experiment, and discuss the relevant findings.
We consider flavor constraints on, and collider signatures of, Asymmetric Dark Matter (ADM) via higher dimension operators. In the supersymmetric models we consider, R-parity violating (RPV) operators carrying B-L interact with n dark matter (DM) par ticles X through an interaction of the form W = X^n O_{B-L}, where O_{B-L} = q l d^c, u^c d^c d^c, l l e^c. This interaction ensures that the lightest ordinary supersymmetric particle (LOSP) is unstable to decay into the X sector, leading to a higher multiplicity of final state particles and reduced missing energy at a collider. Flavor-violating processes place constraints on the scale of the higher dimension operator, impacting whether the LOSP decays promptly. While the strongest limitations on RPV from n-bar{n} oscillations and proton decay do not apply to ADM, we analyze the constraints from meson mixing, mu-e conversion, mu -> 3 e and b -> s l^+ l^-. We show that these flavor constraints, even in the absence of flavor symmetries, allow parameter space for prompt decay to the X sector, with additional jets and leptons in exotic flavor combinations. We study the constraints from existing 8 TeV LHC SUSY searches with (i) 2-6 jets plus missing energy, and (ii) 1-2 leptons, 3-6 jets plus missing energy, comparing the constraints on ADM-extended supersymmetry with the usual supersymmetric simplified models.
We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12, 437 (1981)). It requires that radiative corrections to the electroweak mass scale would be reasonably small. The second is the condition due to Barbieri and Giudice (Nucl. Phys. B 306, 63 (1988)), which is more popular lately. It requires that physical mass scale would not be oversensitive to the values of the input parameters. We show here that the above two conditions behave differently if higher order corrections are taken into account. Veltmans condition is robust (insensitive to higher order corrections), while Barbieri-Giudice condition changes qualitatively. We conclude that higher order perturbative corrections take care of the fine tuning problem, and, in this respect, scalar field is a natural system. We apply the Barbieri-Giudice condition with higher order corrections taken into account to the Standard Model, and obtain new restrictions on the Higgs boson mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا