ترغب بنشر مسار تعليمي؟ اضغط هنا

Beyond the Standard Model in Vector Boson Scattering Signatures

67   0   0.0 ( 0 )
 نشر من قبل Juergen Reuter
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The high-energy scattering of massive electroweak bosons, known as vector boson scattering (VBS), is a sensitive probe of new physics. VBS signatures will be thoroughly and systematically investigated at the LHC with the large data samples available and those that will be collected in the near future. Searches for deviations from Standard Model (SM) expectations in VBS facilitate tests of the Electroweak Symmetry Breaking (EWSB) mechanism. Current state-of-the-art tools and theory developments, together with the latest experimental results, and the studies foreseen for the near future are summarized. A review of the existing Beyond the SM (BSM) models that could be tested with such studies as well as data analysis strategies to understand the interplay between models and the effective field theory paradigm for interpreting experimental results are discussed. This document is a summary of the EU COST network VBScan workshop on the sensitivity of VBS processes for BSM frameworks that took place December 4-5, 2019 at the LIP facilities in Lisbon, Portugal. In this manuscript we outline the scope of the workshop, summarize the different contributions from theory and experiment, and discuss the relevant findings.



قيم البحث

اقرأ أيضاً

118 - Jinmian Li , Shuo Yang , Rao Zhang 2020
Measuring the vector boson scattering (VBS) precisely is an important step towards understanding the electroweak symmetry breaking of the standard model (SM) and detecting new physics beyond the SM. We propose a neural network which compress the feat ures of the VBS into three dimensional latent space. The consistency of the SM prediction and the experimental data is tested by the binned log-likelihood analysis in the latent space. We will show that the network is capable of distinguish different polarization modes of $WWjj$ production in both dileptonic channel and semi-leptonic channel. The method is also applied to constrain the effective field theory and two Higgs Doublet Model. The results demonstrate that the method is sensitive to generic new physics contributing to the VBS.
183 - B.C. Allanach 2016
We cover some current topics in Beyond the Standard Model phenomenology, with an emphasis on collider (particularly Large Hadron Collider) phenomenology. We begin with a review of the Standard Model and some unresolved mysteries that it leaves. Then, we shall heuristically introduce supersymmetry, grand unified theories and extra dimensions as paradigms for expanding the Standard Model. The collider phenomenology of such models is too rich and complex to review, but we give some key examples of how the new states associated with the models might be inferred in Large Hadron Collider events. Before concluding, we finish with a brief description of a quantum field theory approximation that can be used in some cases to reduce model dependence: effective field theory. We show how this can be employed to explain recent measurements of decays of $B$ mesons, which disagree with Standard Model predictions.
We report on a recent calculation of the complete NLO QCD and electroweak corrections to the process $pptomu^+ u_mu e^+ u_ejj$, i.e. like-sign charged vector-boson scattering. The computation is based on the complete amplitudes involving two differen t orders of the strong and electroweak coupling constants at tree level and three different orders at one-loop level. We find electroweak corrections of $-13%$ for the fiducial cross section that are an intrinsic feature of the vector-boson scattering process. For differential distributions, the corrections reach up to $-40%$ in the phase-space regions explored. At the NLO level a unique separation between vector-boson scattering and irreducible background processes is not possible any more at the level of Feynman diagrams.
128 - Jason Aebischer 2018
Estimates of the CP violating observable $varepsilon/varepsilon$ have gained some attention in the past few years. Depending on the long-distance treatment used, they exhibit up to $2.9sigma$ deviation from the experimentally measured value. Such a d eviation motivates the investigation of New Physics (NP) effects in the process $Ktopipi$. In my talk I will review the Standard Model (SM) prediction for $varepsilon/varepsilon$, with a special focus on the Dual QCD approach. On the NP side, I will discuss a recent computation of the hadronic matrix elements of NP operators. Furthermore a master formula for BSM effects in $varepsilon/varepsilon$ is presented. Finally, a treatment of $varepsilon/varepsilon$ using the SM effective theory (SMEFT) will be discussed together with possible correlations to other observables.
Insight into the electroweak (EW) and Higgs sectors can be achieved through measurements of vector boson scattering (VBS) processes. The scattering of EW bosons are rare processes that are precisely predicted in the Standard Model (SM) and are closel y related to the Higgs mechanism. Modifications to VBS processes are also predicted in models of physics beyond the SM (BSM), for example through changes to the Higgs boson couplings to gauge bosons and the resonant production of new particles. In this review, experimental results and theoretical developments of VBS at the Large Hadron Collider, its high luminosity upgrade, and future colliders are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا