ترغب بنشر مسار تعليمي؟ اضغط هنا

Solid state quantum memory using the 31P nuclear spin

239   0   0.0 ( 0 )
 نشر من قبل John Morton
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transfer of information between different physical forms is a central theme in communication and computation, for example between processing entities and memory. Nowhere is this more crucial than in quantum computation, where great effort must be taken to protect the integrity of a fragile quantum bit. Nuclear spins are known to benefit from long coherence times compared to electron spins, but are slow to manipulate and suffer from weak thermal polarisation. A powerful model for quantum computation is thus one in which electron spins are used for processing and readout while nuclear spins are used for storage. Here we demonstrate the coherent transfer of a superposition state in an electron spin processing qubit to a nuclear spin memory qubit, using a combination of microwave and radiofrequency pulses applied to 31P donors in an isotopically pure 28Si crystal. The electron spin state can be stored in the nuclear spin on a timescale that is long compared with the electron decoherence time and then coherently transferred back to the electron spin, thus demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall store/readout fidelity is about 90%, attributed to systematic imperfections in radiofrequency pulses which can be improved through the use of composite pulses. We apply dynamic decoupling to protect the nuclear spin quantum memory element from sources of decoherence. The coherence lifetime of the quantum memory element is found to exceed one second at 5.5K.



قيم البحث

اقرأ أيضاً

Solid-state nuclear spins surrounding individual, optically addressable qubits provide a crucial resource for quantum networks, computation and simulation. While hosts with sparse nuclear spin baths are typically chosen to mitigate qubit decoherence, developing coherent quantum systems in nuclear spin-rich hosts enables exploration of a much broader range of materials for quantum information applications. The collective modes of these dense nuclear spin ensembles provide a natural basis for quantum storage, however, utilizing them as a resource for single spin qubits has thus far remained elusive. Here, by using a highly coherent, optically addressed 171Yb3+ qubit doped into a nuclear spin-rich yttrium orthovanadate crystal, we develop a robust quantum control protocol to manipulate the multi-level nuclear spin states of neighbouring 51V5+ lattice ions. Via a dynamically-engineered spin exchange interaction, we polarise this nuclear spin ensemble, generate collective spin excitations, and subsequently use them to implement a long-lived quantum memory. We additionally demonstrate preparation and measurement of maximally entangled 171Yb--51V Bell states. Unlike conventional, disordered nuclear spin based quantum memories, our platform is deterministic and reproducible, ensuring identical quantum registers for all 171Yb qubits. Our approach provides a framework for utilising the complex structure of dense nuclear spin baths, paving the way for building large-scale quantum networks using single rare-earth ion qubits.
119 - J.-M. Cai , F. Jelezko , N. Katz 2012
We investigate the performance of inhomogeneously broadened spin ensembles as quantum memories under continuous dynamical decoupling. The role of the continuous driving field is two-fold: first, it decouples individual spins from magnetic noise; seco nd and more important, it suppresses and reshapes the spectral inhomogeneity of spin ensembles. We show that a continuous driving field, which itself may also be inhomogeneous over the ensemble, can enhance the decay of the tails of the inhomogeneous broadening distribution considerably. This fact enables a spin ensemble based quantum memory to exploit the effect of cavity protection and achieve a much longer storage time. In particular, for a spin ensemble with a Lorentzian spectral distribution, our calculations demonstrate that continuous dynamical decoupling has the potential to improve its storage time by orders of magnitude for the state-of-art experimental parameters.
Spins associated to single defects in solids provide promising qubits for quantum information processing and quantum networks. Recent experiments have demonstrated long coherence times, high-fidelity operations and long-range entanglement. However, c ontrol has so far been limited to a few qubits, with entangled states of three spins demonstrated. Realizing larger multi-qubit registers is challenging due to the need for quantum gates that avoid crosstalk and protect the coherence of the complete register. In this paper, we present novel decoherence-protected gates that combine dynamical decoupling of an electron spin with selective phase-controlled driving of nuclear spins. We use these gates to realize a 10-qubit quantum register consisting of the electron spin of a nitrogen-vacancy center and 9 nuclear spins in diamond. We show that the register is fully connected by generating entanglement between all 45 possible qubit pairs, and realize genuine multipartite entangled states with up to 7 qubits. Finally, we investigate the register as a multi-qubit memory. We show coherence times up to 63(2) seconds - the longest reported for a single solid-state qubit - and demonstrate that two-qubit entangled states can be stored for over 10 seconds. Our results enable the control of large quantum registers with long coherence times and therefore open the door to advanced quantum algorithms and quantum networks with solid-state spin qubits.
Large-scale quantum networks will employ telecommunication-wavelength photons to exchange quantum information between remote measurement, storage, and processing nodes via fibre-optic channels. Quantum memories compatible with telecommunication-wavel ength photons are a key element towards building such a quantum network. Here, we demonstrate the storage and retrieval of heralded 1532 nm-wavelength photons using a solid-state waveguide quantum memory. The heralded photons are derived from a photon-pair source that is based on parametric down-conversion, and our quantum memory is based on a 6 GHz-bandwidth atomic frequency comb prepared using an inhomogeneously broadened absorption line of a cryogenically-cooled erbium-doped lithium niobate waveguide. Using persistent spectral hole burning under varying magnetic fields, we determine that the memory is enabled by population transfer into niobium and lithium nuclear spin levels. Despite limited storage time and efficiency, our demonstration represents an important step towards quantum networks that operate in the telecommunication band and the development of on-chip quantum technology using industry-standard crystals.
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا