ﻻ يوجد ملخص باللغة العربية
We report on the first direct observation of coherent control of single particle tunneling in a strongly driven double well potential. In our setup atoms propagate in a periodic arrangement of double wells allowing the full control of the driving parameters such as frequency, amplitude and even the space-time symmetry. Our experimental findings are in quantitative agreement with the predictions of the corresponding Floquet theory and are also compared to the predictions of a simple two mode model. Our experiments reveal directly the critical dependence of coherent destruction of tunneling on the generalized parity symmetry.
We study the tunneling of a small ensemble of strongly repulsive bosons in a one-dimensional triple-well potential. The usual treatment within the single-band approximation suggests suppression of tunneling in the strong interaction regime. However,
We propose a new two--qubit phase gate for ultra--cold atoms confined in an experimentally realized tilted double--well optical lattice [Sebby--Strabley et al., Phys. Rev. A {bf 73} 033605 (2006)]. Such a lattice is capable of confining pairs of atom
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well pot
We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial di
A parametrized double-well potential is proposed to address the issue of the impact of shape deformability of some bistable physical systems, on their quantum dynamics and classical statistical mechanics. The parametrized double-well potential posses