ترغب بنشر مسار تعليمي؟ اضغط هنا

Inclination-Independent Galaxy Classification

82   0   0.0 ( 0 )
 نشر من قبل Jeremy Bailin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method to classify galaxies from large surveys like the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: Early-type galaxies, which are red, highly concentrated, and round; Late-type galaxies, which are blue, have low concentrations, and are disk dominated; and Intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized Intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that Intermediate-type galaxies are those that have lost their cold gas via strangulation, while Early-type galaxies are those that have experienced a major merger that either consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the ``dry merger scenario).

قيم البحث

اقرأ أيضاً

In this work the INTEGRAL hard X-ray selected sample of AGN has been used to investigate the possible contribution of absorbing material distributed within the host galaxies to the total amount of NH measured in the X-ray band. We collected all the a vailable axial ratio measurements of the galaxies hosting our AGN together with their morphological information and find that also for our hard X-ray selected sample a deficit of edge-on galaxies hosting type 1 AGN is present. We estimate that in our hard X-ray selected sample there is a deficit of 24% (+/- 5%) of type 1 AGN. Possible bias in redshift has been excluded, as we found the same effect in a well determined range of z where the number and the distributions of the two classes are statistically the same. Our findings clearly indicate that material located in the host galaxy on scales of hundreds of parsecs and not aligned with the putative absorbing torus of the AGN can contribute to the total amount of column density. This galactic absorber can be large enough to hide the broad line region of some type 1 AGN causing their classification as type 2 objects and giving rise to the deficiency of type 1 in edge-on galaxies.
Financial institutions mostly deal with people. Therefore, characterizing different kinds of human behavior can greatly help institutions for improving their relation with customers and with regulatory offices. In many of such interactions, humans ha ve some internal goals, and execute some actions within the financial system that lead them to achieve their goals. In this paper, we tackle these tasks as a behavior-traces classification task. An observer agent tries to learn characterizing other agents by observing their behavior when taking actions in a given environment. The other agents can be of several types and the goal of the observer is to identify the type of the other agent given a trace of observations. We present CABBOT, a learning technique that allows the agent to perform on-line classification of the type of planning agent whose behavior is observing. In this work, the observer agent has partial and noisy observability of the environment (state and actions of the other agents). In order to evaluate the performance of the learning technique, we have generated a domain-independent goal-based simulator of agents. We present experiments in several (both financial and non-financial) domains with promising results.
77 - G. G. Kacprzak 2011
We have used GIM2D to quantify the morphological properties of 40 intermediate redshift MgII absorption-selected galaxies (0.03<Wr(2796)<2.9 Ang), imaged with WFPC-2/HST, and compared them to the halo gas properties measured form HIRES/Keck and UVES/ VLT quasar spectra. We find that as the quasar-galaxy separation, D, increases the MgII equivalent decreases with large scatter, implying that D is not the only physical parameter affecting the distribution and quantity of halo gas. Our main result shows that inclination correlates with MgII absorption properties after normalizing out the relationship (and scatter) between the absorption properties and D. We find a 4.3 sigma correlation between Wr(2796) and galaxy inclination, normalized by impact parameter, i/D. Other measures of absorption optical depth also correlate with i/D at greater than 3.2 sigma significance. Overall, this result suggests that MgII gas has a co-planer geometry, not necessarily disk-like, that is coupled to the galaxy inclination. It is plausible that the absorbing gas arises from tidal streams, satellites, filaments, etc., which tend to have somewhat co-planer distributions. This result does not support a picture in which MgII absorbers with Wr(2796)<1A are predominantly produced by star-formation driven winds. We further find that; (1) MgII host galaxies have quantitatively similar bulge and disk scale length distribution to field galaxies at similar redshifts and have a mean disk and bulge scale length of 3.8kpc and 2.5kpc, respectively; (2) Galaxy color and luminosity do not correlate strongly with absorption properties, implying a lack of a connection between host galaxy star formation rates and absorption strength; (3) Parameters such as scale lengths and bulge-to-total ratios do not significantly correlate with the absorption parameters, suggesting that the absorption is independent of galaxy size or mass.
The classification of histopathological images is of great value in both cancer diagnosis and pathological studies. However, multiple reasons, such as variations caused by magnification factors and class imbalance, make it a challenging task where co nventional methods that learn from image-label datasets perform unsatisfactorily in many cases. We observe that tumours of the same class often share common morphological patterns. To exploit this fact, we propose an approach that learns similarity-based multi-scale embeddings (SMSE) for magnification-independent histopathological image classification. In particular, a pair loss and a triplet loss are leveraged to learn similarity-based embeddings from image pairs or image triplets. The learned embeddings provide accurate measurements of similarities between images, which are regarded as a more effective form of representation for histopathological morphology than normal image features. Furthermore, in order to ensure the generated models are magnification-independent, images acquired at different magnification factors are simultaneously fed to networks during training for learning multi-scale embeddings. In addition to the SMSE, to eliminate the impact of class imbalance, instead of using the hard sample mining strategy that intuitively discards some easy samples, we introduce a new reinforced focal loss to simultaneously punish hard misclassified samples while suppressing easy well-classified samples. Experimental results show that the SMSE improves the performance for histopathological image classification tasks for both breast and liver cancers by a large margin compared to previous methods. In particular, the SMSE achieves the best performance on the BreakHis benchmark with an improvement ranging from 5% to 18% compared to previous methods using traditional features.
We present a new classification of families identified among the population of high-inclination asteroids. We computed synthetic proper elements for a sample of 18,560 numbered and multi-opposition objects having sine of proper inclination greater th an 0.295. We considered three zones at different heliocentric distances (inner, intermediate and outer region) and used the standard approach based on the Hierarchical Clustering Method (HCM) to identify families in each zone. In doing so, we used slightly different approach with respect to previously published methodologies, to achieve a more reliable and robust classification. We also used available SDSS color data to improve membership and identify likely family interlopers. We found a total of 38 families, as well as a significant number of clumps and clusters deserving further investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا