ترغب بنشر مسار تعليمي؟ اضغط هنا

The superkinetic and interacting terms of Chiralsuperfields

20   0   0.0 ( 0 )
 نشر من قبل Tuan Do quoc
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we achieve some interesting results in the way to make sense how superparticles interact together and to ordinary particles by means of putting aside the dimensional constraints. This is the first step in the process of constructing an effective model taking binding possibilities of superparticles into account.

قيم البحث

اقرأ أيضاً

In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantors ideas and describes infinite and infinitesimal numbers in accordance with the prin ciple `The part is less than the whole. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a computer - the Infinity Computer - introduced recently in by Ya.D. Sergeyev in a number of patents. The new approach does not contradict Cantor. In contrast, it can be viewed as an evolution of his deep ideas regarding the existence of different infinite numbers in a more applied way. Site percolation and gradient percolation have been studied by applying the new computational tools. It has been established that in an infinite system the phase transition point is not really a point as with respect of traditional approach. In light of new arithmetic it appears as a critical interval, rather than a critical point. Depending on microscope we use this interval could be regarded as finite, infinite and infinitesimal short interval. Using new approach we observed that in vicinity of percolation threshold we have many different infinite clusters instead of one infinite cluster that appears in traditional consideration.
In this paper, we have presented an FLRW universe containing two-fluids (baryonic and dark energy) with a deceleration parameter (DP) having a transition from past decelerating to the present accelerating universe. In this model, dark energy (DE) int eracts with dust to produce a new law for the density. As per our model, our universe is at present in a phantom phase after passing through a quintessence phase in the past. The physical importance of the two-fluid scenario is described in various aspects. The model is shown to satisfy current observational constraints such as recent Planck results. Various cosmological parameters relating to the history of the universe have been investigated.
201 - Roman Sverdlov 2013
The goal of this paper is to re-express QFT in terms of two classical fields living in ordinary space with single extra dimension. The role of the first classical field is to set up an injection from the set of values of extra dimension into the set of functions, and then said injection will be used in order to convert the second field into a coarse grained functional, thereby approximating QFT state. It turns out that this work also has a side-benefit of modeling ensemble of states in terms of one single state which, in turn, is interpretted in the above way. It is important to clarify that by classical we mean functions over ordinary space rather than configuration, Fock or function space. The classical theory that we propose is still non-local.
70 - Johar M. Ashfaque 2016
After revisiting the heterotic string-derived low-energy effective model of cite{Ashfaque:2016ydg, Athanasopoulos:2014bba, Faraggi:2016xnm, Ashfaque:2016jha} constructed in the four-dimensional free fermionic formulation, we find two axions which are either harmful or massive. As a direct consequence, they can not solve the strong $CP$ problem which is in complete agreement with cite{Lopez:1990iq, Halyo:1993xn}. We also explore the possibility of the self-interacting dark matter residing in the non-Abelian gauge group present in the hidden sector cite{Faraggi:2000pv}. We find that the low-energy string-derived model naturally welcomes the self-interacting dark matter as $4$ copies of the non-Abelian, hidden $SU(2)$ gauge group factor are present.
We investigate the validity of the generalized second law (GSL) of gravitational thermodynamics in a non-flat FRW universe containing the interacting generalized Chaplygin gas with the baryonic matter. The dynamical apparent horizon is assumed to be the boundary of the universe. We show that for the interacting generalized Chaplygin gas as a unified candidate for dark matter (DM) and dark energy (DE), the equation of state parameter can cross the phantom divide. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the GSL is always satisfied throughout the history of the universe for any spatial curvature, independently of the equation of state of the interacting generalized Chaplygin gas model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا