ترغب بنشر مسار تعليمي؟ اضغط هنا

An FLRW interacting dark energy model of the Universe

181   0   0.0 ( 0 )
 نشر من قبل Gopi Kant Goswami Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we have presented an FLRW universe containing two-fluids (baryonic and dark energy) with a deceleration parameter (DP) having a transition from past decelerating to the present accelerating universe. In this model, dark energy (DE) interacts with dust to produce a new law for the density. As per our model, our universe is at present in a phantom phase after passing through a quintessence phase in the past. The physical importance of the two-fluid scenario is described in various aspects. The model is shown to satisfy current observational constraints such as recent Planck results. Various cosmological parameters relating to the history of the universe have been investigated.

قيم البحث

اقرأ أيضاً

We have developed an accelerating cosmological model for the present universe which is phantom for the period $ (0 leq z leq 1.99)$ and quintessence phase for $(1.99 leq z leq 2.0315)$. The universe is assumed to be filled with barotropic and dark en ergy(DE) perfect fluid in which DE interact with matter. For a deceleration parameter(DP) having decelerating-accelerating transition phase of universe, we assume hybrid expansion law for scale factor. The transition red shift for the model is obtained as $z_t = 0.956$. The model satisfies current observational constraints.
67 - K. Karami , A. Sorouri 2010
Here we consider the entropy-corrected version of the new agegraphic dark energy model in the non-flat FRW universe. We derive the exact differential equation that determines the evolution of the entropy-corrected new agegraphic dark energy density p arameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.
The concept of oscillatory Universe appears to be realistic and buried in the dynamic dark energy equation of state. We explore its evolutionary history under the frame work of general relativity. We observe that oscillations do not go unnoticed with such an equation of state and that their effects persist later on in cosmic evolution. The `classical general relativity seems to retain the past history of oscillatory Universe in the form of increasing scale factor as the classical thermodynamics retains this history in the form of increasing cosmological entropy.
In present research, we construct Kaniadakis holographic dark energy (KHDE) model within a non-flat Universe by considering the Friedmann-Robertson-Walker (FRW) metric with open and closed spatial geometries. We therefore investigate cosmic evolution by employing the density parameter of the dark energy (DE), the equation of state (EoS) parameter and the deceleration parameter (DP). The transition from decelerated to accelerated expanding phase for the KHDE Universe is explained through dynamical behavior of DP. With the classification of matter and DE dominated epochs, we find that the Universe thermal history can be defined through the KHDE scenario, and moreover, a phantom regime is experienceable. The model parameters are constrained by applying the newest $30$ data cases of $H(z)$ measurements, over the redshift span $0.07 leq z leq 2.36$, and the distance modulus measurement of the recent Union $2.1$ data set of type Ia supernovae. The classical stability of KHDE model has also been addressed.
Recent measurements of the Cosmic Microwave Anisotropies power spectra measured by the Planck satellite show a preference for a closed universe at more than $99 %$ Confidence Level. Such a scenario is however in disagreement with several low redshift observables, including luminosity distances of Type Ia Supernovae. Here we show that Interacting Dark Energy (IDE) models can ease the discrepancies between Planck and Supernovae Ia data in a closed Universe. Therefore IDE cosmologies remain as very appealing scenarios, as they can provide the solution to a number of observational tensions in different fiducial cosmologies. The results presented here strongly favour broader analyses of cosmological data, and suggest that relaxing the usual flatness and vacuum energy assumptions can lead to a much better agreement among theory and observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا