ﻻ يوجد ملخص باللغة العربية
We use semi-analytic modelling of the galaxy-cluster population and its strong lensing efficiency to explore how the expected abundance of large gravitational arcs on the sky depends on $sigma_8$. Our models take all effects into account that have been shown to affect strong cluster lensing substantially, in particular cluster asymmetry, substructure, merging, and variations in the central density concentrations. We show that the optical depth for long and thin arcs increases by approximately one order of magnitude when $sigma_8$ increases from 0.7 to 0.9, owing to a constructive combination of several effects. Models with high $sigma_8$ are also several orders of magnitude more efficient in producing arcs at intermediate and high redshifts. Finally, we use realistic source number counts to quantitatively predict the total number of arcs brighter than several magnitude limits in the R and I bands. We confirm that, while $sigma_8sim0.9$ may come close to the known abundance of arcs, even $sigma_8sim0.8$ falls short by almost an order of magnitude in reproducing known counts. We conclude that, should $sigma_8sim0.8$ be confirmed, we would fail to understand the strong-lensing efficiency of the galaxy cluster population, and in particular the abundance of arcs in high-redshift clusters. We argue that early-dark energy or non-Gaussian density fluctuations may indicate one way out of this problem.
After a brief introduction to gravitational lensing theory, a rough overview of the types of gravitational lensing statistics that have been performed so far will be given. I shall then concentrate on recent results of galaxy-galaxy lensing, which in
Constraining the sub-galactic matter-power spectrum on 1-10 kpc scales would make it possible to distinguish between the concordance $Lambda$CDM model and various alternative dark-matter models due to the significantly different levels of predicted m
We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarizati
Standard cosmology has many successes on large scales, but faces some fundamental difficulties on small, galactic scales. One such difficulty is the cusp/core problem. High resolution observations of the rotation curves for dark matter dominated low
We present measurements of the weak gravitational lensing shear power spectrum based on $450$ sq. deg. of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift aut