ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong lensing statistics and the power spectrum normalisation

72   0   0.0 ( 0 )
 نشر من قبل Cosimo Fedeli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use semi-analytic modelling of the galaxy-cluster population and its strong lensing efficiency to explore how the expected abundance of large gravitational arcs on the sky depends on $sigma_8$. Our models take all effects into account that have been shown to affect strong cluster lensing substantially, in particular cluster asymmetry, substructure, merging, and variations in the central density concentrations. We show that the optical depth for long and thin arcs increases by approximately one order of magnitude when $sigma_8$ increases from 0.7 to 0.9, owing to a constructive combination of several effects. Models with high $sigma_8$ are also several orders of magnitude more efficient in producing arcs at intermediate and high redshifts. Finally, we use realistic source number counts to quantitatively predict the total number of arcs brighter than several magnitude limits in the R and I bands. We confirm that, while $sigma_8sim0.9$ may come close to the known abundance of arcs, even $sigma_8sim0.8$ falls short by almost an order of magnitude in reproducing known counts. We conclude that, should $sigma_8sim0.8$ be confirmed, we would fail to understand the strong-lensing efficiency of the galaxy cluster population, and in particular the abundance of arcs in high-redshift clusters. We argue that early-dark energy or non-Gaussian density fluctuations may indicate one way out of this problem.



قيم البحث

اقرأ أيضاً

After a brief introduction to gravitational lensing theory, a rough overview of the types of gravitational lensing statistics that have been performed so far will be given. I shall then concentrate on recent results of galaxy-galaxy lensing, which in dicate that galactic halos extend much further than can be probed via rotation of stars and gas.
88 - D. Bayer 2018
Constraining the sub-galactic matter-power spectrum on 1-10 kpc scales would make it possible to distinguish between the concordance $Lambda$CDM model and various alternative dark-matter models due to the significantly different levels of predicted m ass structure. Here, we demonstrate a novel approach to observationally constrain the population of overall law-mass density fluctuations in the inner regions of massive elliptical lens galaxies, based on the power spectrum of the associated surface-brightness perturbations observable in highly magnified galaxy-scale Einstein rings and gravitational arcs. The application of our method to the SLACS lens system SDSS J0252+0039 results in the following limits (at the 99 per cent confidence level) on the dimensionless convergence-power spectrum (and the associated standard deviation in aperture mass): $Delta^{2}_{deltakappa}<1$ ($sigma_{AM}< 0.8 times 10^8 M_odot$) on 0.5-kpc scale, $Delta^{2}_{deltakappa}<0.1$ ($sigma_{AM}< 1 times 10^8 M_odot$) on 1-kpc scale and $Delta^{2}_{deltakappa}<0.01$ ($sigma_{AM}< 3 times 10^8 M_odot$) on 3-kpc scale. The estimated effect of CDM sub-haloes lies considerably below these first observational upper-limit constraints on the level of inhomogeneities in the projected total mass distribution of galactic haloes. Future analysis for a larger sample of galaxy-galaxy strong lens systems will narrow down these constraints and rule out all cosmological models predicting a significantly larger level of clumpiness on these critical sub-galactic scales.
We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarizati on data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol dataset.
Standard cosmology has many successes on large scales, but faces some fundamental difficulties on small, galactic scales. One such difficulty is the cusp/core problem. High resolution observations of the rotation curves for dark matter dominated low surface brightness (LSB) galaxies imply that galactic dark matter halos have a density profile with a flat central core, whereas N-body structure formation simulations predict a divergent (cuspy) density profile at the center. It has been proposed that this problem can be resolved by stellar feedback driving turbulent gas motion that erases the initial cusp. However, strong gravitational lensing prefers a cuspy density profile for galactic halos. In this paper, we use the most recent high resolution observations of the rotation curves of LSB galaxies to fit the core size as a function of halo mass, and compare the resultant lensing probability to the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). The lensing probabilities based on such density profiles are too low to match the observed lensing in CLASS/JVAS. High baryon densities in the galaxies that dominate the lensing statistics can reconcile this discrepancy, but only if they steepen the mass profile rather than making it more shallow. This places contradictory demands upon the effects of baryons on the central mass profiles of galaxies.
We present measurements of the weak gravitational lensing shear power spectrum based on $450$ sq. deg. of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift aut o-correlation and cross-correlation spectra in the multipole range $76 leq ell leq 1310$. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a $Lambda$CDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalising over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination $S_8 equiv sigma_8 sqrt{Omega_{rm m}/0.3}$ yielding $S_8 = 0.651 pm 0.058$ (3 z-bins), confirming the recently reported tension in this parameter with constraints from Planck at $3.2sigma$ (3 z-bins). We cross-check the results of the 3 z-bin analysis with the weaker constraints from the 2 z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions, and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl/
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا