ترغب بنشر مسار تعليمي؟ اضغط هنا

Old globular clusters in magellanic-type dwarf irregular galaxies

319   0   0.0 ( 0 )
 نشر من قبل Iskren Georgiev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the old globular clusters (GC) using archival F606W and F814W HST/ACS images of 19 Magellanic-type dwarf Irregular (dIrr) galaxies found in nearby (2 - 8 Mpc) associations of only dwarf galaxies. All dIrrs have absolute magnitudes fainter than or equal to the SMC (Mv = -16.2 mag). We detect 50 GC candidates in 13 dIrrs, of which 37 have (V-I) colors consistent with blue (old, metal-poor) GCs (bGC). The luminosity function (LF) of the bGCs in our sample peaks at Mv = -7.41 +/- 0.22 mag, consistent with other galaxy types. The width of the LF is sigma = 1.79 +/- 0.31 which is typical for dIrrs, but broader than the typical width in massive galaxies. The half-light radii and ellipticities of the GCs in our sample (rh ~ 3.3 pc, e ~ 0.1) are similar to those of old GCs in the Magellanic Clouds and to those of Old Halo (OH) GCs in our Galaxy, but not as extended and spherical as the Galactic Young Halo (YH) GCs (rh ~ 7.7 pc, e ~ 0.06). The e distribution shows a turnover rather than a power law as observed for the Galactic GCs. This might suggest that GCs in dIrrs are kinematically young and not fully relaxed yet. The present-day specific frequencies (SN) span a broad range: 0.3 < SN < 11. Assuming a dissipationless age fading of the galaxy light, the SN values would increase by a factor of ~ 2.5 to 16, comparable with values for early-type dwarfs (dE/dSphs). A bright central GC candidate, similar to nuclear clusters of dEs, is observed in one of our dIrrs: NGC 1959. This nuclear GC has luminosity, color, and structural parameters similar to that of wCen and M54, suggesting that the latter might have their origin in the central regions of similar Galactic building blocks. A comparison between properties of bGCs and Galactic YH GCs, suspected to have originated from similar dIrrs, is performed.

قيم البحث

اقرأ أيضاً

For the full galaxy mass range, we find that previously observed trends of globular cluster (GC) system scaling parameters (number, luminosity or mass of all GCs in a galaxy normalized to the host galaxy luminosity or mass, e.g. S_L) as a function of galaxy mass, holds irrespective of galaxy type or environment. The S_L-value of early-type galaxies is, on average, twice that of late-types. We derive theoretical predictions which describe remarkably well the observed GC system scaling parameter distributions given an assumed GC formation efficiency ({eta}), i.e. the ratio of total mass in GCs to galaxy halo mass. It has a mean value of {eta}=5.5e-5 , and an increasing scatter toward low galaxy mass. The excess {eta}-values of some massive galaxies compared to expectations from the mean model prediction, may be attributed to an efficient GC formation, inefficient production of field stars, accretion of low-mass high-{eta} galaxies or likely a mixture of all these effects.
Data are presently available on the luminosities and half-light radii of 101 globular clusters associated with low-luminosity parent galaxies. The luminosity distribution of globulars embedded in dwarf galaxies having $M_{v} > -16$ is found to differ dramatically from that for globular clusters surrounding giant host galaxies with $M_{v} < -16$. The luminosity distribution of globular clusters in giant galaxies peaks at $M_{v} sim -7.5$, whereas that for dwarfs is found to increases monotonically down to the completeness limit of the cluster data at $M_{v} sim -5.0$. Unexpectedly, the power law distribution of the luminosities of globular clusters hosted by dwarf galaxies is seen to be much flatter than the that of bright unevolved part of the luminosity distribution of globular clusters associated with giant galaxies. The specific frequency of globular clusters that are fainter than $M_{v} = -7.5$ is found to be particularly high in dwarf galaxies. The luminosity distribution of the LMC globular clusters is similar to that in giant galaxies, and differs from those of the globulars in dwarf galaxies. The present data appear to show no strong dependence of globular cluster luminosity on the morphological types of their parent galaxies. No attempt is made to explain the unexpected discovery that the luminosity distribution of globular clusters is critically dependent on parent galaxy luminosity (mass?), but insensitive to the morphological type of their host galaxy.
212 - Kenji Bekki , Hideki Yahagi 2006
We investigate structural properties of old, metal-poor globular clusters (GCs) formed at high redshifts (z>6) and located inside and outside virialized galaxy-scale halos in clusters of galaxies with the total masses of M_CL based on high-resolution cosmological simulations with models of GC formation. We mainly derive the parameter dependences of physical properties of intracluster GCs (ICGCs) based on the results of 14 models. Our principle results are summarized as follows. (1) The projected radial density profiles (Sigma_GC) of ICGCs in clusters with different M_CL can be diverse, though ICGCs have inhomogeneous, asymmetric, and somewhat elongated distributions in most models. If Sigma_GC (R) ~ R^alpha, alpha ranges from -1.5 to -2.5 for GCs in clusters. (2) Although total number of GCs within the central 0.05 Mpc (N_GC,0.05) and 0.2 Mpc (N_GC,0.2) are diverse in different clusters, they can depend weakly on M_CL in such a way that both N_GC,0.05 and N_GC,0.2 are likely to be larger for clusters with larger M_CL. (3) Total number of GCs per cluster masses (specific frequency of GCs for clusters of galaxies) are more likely to be larger in more massive clusters, mainly because a larger number of earlier virialized objects can be located in more massive clusters. (4) Spatial distributions of old GCs in clusters can depend on the truncation epoch of GC formation (z_trun) such that they can be steeper and more compact in the models with higher z_trun. (5) The mean metallicity of ICGCs in a cluster can be smaller than that of GCs within the cluster member galaxy-scale halos by ~ 0.3 in [Fe/H]. Metallicity distribution functions (MDFs) of ICGCs show peak values around [Fe/H] ~ -1.6 and do not have remarkable bimodality.
Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project, which aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for the future ones. Our pilot study presents spatially integrated K-band spectra of three old (>10 Gyr) and metal poor ([Fe/H]~-1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H]~-0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO(2-0) absorption features. The Na I index decreases with the increasing age and decreasing metallicity of the clusters. The Dco index, used to measure the 12CO(2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction with the predictions of the stellar population models of Maraston (2005). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age >2 Gyr we find Dco index measurements consistent with the model predictions.
147 - Evan N. Kirby 2015
We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs S culptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the Milky Way stellar halo. Nonetheless, the stars with [C/Fe] < +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] knee adds to the evidence from [alpha/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا