ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies

240   0   0.0 ( 0 )
 نشر من قبل Evan Kirby
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Evan N. Kirby




اسأل ChatGPT حول البحث

We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the Milky Way stellar halo. Nonetheless, the stars with [C/Fe] < +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] knee adds to the evidence from [alpha/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs.



قيم البحث

اقرأ أيضاً

Low mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star format ion and chemical evolution. We report on the analysis of a sample of 11 stars belonging to 5 different ultra faint dwarf spheroidal galaxies (UfDSph) based on X-Shooter spectra obtained at the VLT. Medium resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Considering all the stars as representative of the same population of low mass galaxies, we found that the [alpha/Fe] ratios vs [Fe/H] decreases as the metallicity of the star increases in a way similar to what is found for the population of stars belonging to dwarf spheroidal galaxies. The main difference is that the solar [alpha/Fe] is reached at a much lower metallicity for the UfDSph than the dwarf spheroidal galaxies. We report for the first time the abundance of strontium in CVnI. The star we analyzed in this galaxy has a very high [Sr/Fe] and a very low upper limit of barium which makes it a star with an exceptionally high [Sr/Ba] ratio. Our results seem to indicate that the galaxies which have produced the bulk of their stars before the reionization (fossil galaxies) have lower [X/Fe] ratios at a given metallicity than the galaxies that have experienced a discontinuity in their star formation rate (quenching).
A new family of self-consistent DF-based models of stellar systems is explored. The stellar component of the models is described by a distribution function (DF) depending on the action integrals, previously used to model the Fornax dwarf spheroidal g alaxy (dSph). The stellar component may cohabit with either a dark halo, also described by a DF, or with a massive central black hole. In all cases we solve for the models self-consistent potential. Focussing on spherically symmetric models, we show how the stellar observables vary with the anisotropy prescribed by the DF, with the dominance and nature of the dark halo, and with the mass of the black hole. We show that precise fits to the observed surface brightness profiles of four globular clusters can be obtained for a wide range of prescribed velocity anisotropies. We also obtain precise fits to the observed projected densities of four dSphs. Finally, we present a three-component model of the Scupltor dSph with distinct DFs for the red and blue horizontal branch stars and the dark matter halo.
(Abridged) Using luminosities and structural parameters of globular clusters (GCs) in the nuclear regions (nGCs) of low-mass dwarf galaxies from HST/ACS imaging we derive the present-day escape velocities (v_esc) of stellar ejecta to reach the cluste r tidal radius and compare them with those of Galactic GCs with extended (hot) horizontal branches (EHBs-GCs). For EHB-GCs, we find a correlation between the present-day v_esc and their metallicity as well as (V-I)_0 colour. The similar v_esc, (V-I)_0 distribution of nGCs and EHB-GCs implies that nGCs could also have complex stellar populations. The v_esc-[Fe/H] relation could reflect the known relation of increasing stellar wind velocity with metallicity, which in turn could explain why more metal-poor clusters typically show more peculiarities in their stellar population than more metal-rich clusters of the same mass do. Thus the cluster v_esc can be used as parameter to describe the degree of self-enrichment. The nGCs populate the same Mv vs. rh region as EHB-GCs, although they do not reach the sizes of the largest EHB-GCs like wCen and NGC 2419. We argue that during accretion the rh of an nGC could increase due to significant mass loss in the cluster vicinity and the resulting drop in the external potential in the core once the dwarf galaxy dissolves. Our results support the scenario in which Galactic EHB-GCs have originated in the centres of pre-Galactic building blocks or dwarf galaxies that were later accreted by the Milky Way.
153 - P. North 2012
We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had a lready been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia.
NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]$sim$$-$1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can g ive hints on the earliest chemical enrichment in the central Galaxy. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of FeI and FeII lines from UVES spectra. The abundances were obtained with spectrum synthesis. The present analysis combined with previous UVES results gives a mean radial velocity of vrhel = -15.62+-7.7 km.s-1 and a metallicity of [Fe/H] = -1.05+-0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=+0.28, [Si/Fe]=+0.19, and [Ca/Fe]=+0.13, together with the iron-peak element [Ti/Fe]=+0.13, and the r-process element [Eu/Fe]=+0.40.The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا