ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism in Herbig Ae/Be stars and the link to the Ap/Bp stars

88   0   0.0 ( 0 )
 نشر من قبل Evelyne Alecian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Alecian




اسأل ChatGPT حول البحث

Among the A/B stars, about 5% host large-scale organised magnetic fields. These magnetic stars show also abundance anomalies in their spectra, and are therefore called the magnetic Ap/Bp stars. Most of these stars are also slow rotators compared to the normal A and B stars. Today, one of the greatest challenges concerning the Ap/Bp stars is to understand the origin of their slow rotation and their magnetic fields. The favoured hypothesis for the latter is that the fields are fosils, which implies that the magnetic fields subsist throughout the different evolutionary phases, and in particular during the pre-main sequence phase. The existence of magnetic fields at the pre-main sequence phase is also required to explain the slow rotation of Ap/Bp stars. During the last 3 years we performed a spectropolarimetric survey of the Herbig Ae/Be stars in the field and in young clusters, in order to investigate their magnetism and rotation. These investigations have resulted in the detection and/or confirmation of magnetic fields in 8 Herbig Ae/Be stars, ranging in mass from 2 to nearly 15 solar masses. In this paper I will present the results of our survey, as well as their implications for the origin and evolution of the magnetic fields and rotation of the A and B stars.



قيم البحث

اقرأ أيضاً

We have found Herbig Ae/Be star candidates in the western region of the Magellanic Bridge. Using the near infrared camera SIRIUS and the 1.4 m telescope IRSF, we surveyed about 3.0 deg x 1.3 deg (24 deg < RA < 36 deg, -75 deg < Dec. < -73.7 deg) in t he J, H, and Ks bands. On the basis of colors and magnitudes, about 200 Herbig Ae/Be star candidates are selected. Considering the contaminations by miscellaneous sources such as foreground stars and early-type dwarfs in the Magellanic Bridge, we estimate that about 80 (about 40%) of the candidates are likely to be Herbig Ae/Be stars. We also found one concentration of the candidates at the young star cluster NGC 796, strongly suggesting the existence of pre-main-sequence (PMS) stars in the Magellanic Bridge. This is the first detection of PMS star candidates in the Magellanic Bridge, and if they are genuine PMS stars, this could be direct evidence of recent star formation. However, the estimate of the number of Herbig Ae/Be stars depends on the fraction of classical Be stars, and thus a more precise determination of the Be star fraction or observations to differentiate between the Herbig Ae/Be stars and classical Be stars are required.
171 - E. Alecian 2008
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured f ossil field hypothesis suggests that a few percent of magnetic pre-main sequence A/B stars should exhibit similar magnetic strengths and topologies to the magnetic Ap/Bp stars. In this talk I will present the methods that we have used to characterise the magnetic fields of the Herbig Ae/Be stars, as well as our first conclusions on the origin of magnetism in intermediate-mass stars.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred di poles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
75 - Jorick S. Vink 2002
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in c ircumstellar discs. A second outcome of our study is that the spectropolarimetric signatures for the lower mass Herbig Ae stars differ from those of the higher mass Herbig Be stars. Depolarisations across H_alpha are observed in the Herbig Be group, whereas line polarisations are common amongst the Herbig Ae stars in our sample. These line polarisation effects can be understood in terms of a compact H_alpha source that is polarised by a rotating disc-like configuration. The difference we detect between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung-Russell Diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. However, it is also possible that the compact polarised line component, present in the Herbig Ae stars, is masked in the Herbig Be stars due to their higher levels of H_alpha emission.
158 - S. Turcotte 2003
Ap/Bp stars are magnetic chemically peculiar early A and late B type stars of the main sequence. They exhibit peculiar surface abundance anomalies that are thought to be the result of gravitational settling and radiative levitation. The physics of di ffusion in these stars are reviewed briefly and some model predictions are discussed. While models reproduce some observations reasonably well, more work is needed before the behavior of diffusing elements in a complex magnetic field is fully understood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا