ﻻ يوجد ملخص باللغة العربية
Among the A/B stars, about 5% host large-scale organised magnetic fields. These magnetic stars show also abundance anomalies in their spectra, and are therefore called the magnetic Ap/Bp stars. Most of these stars are also slow rotators compared to the normal A and B stars. Today, one of the greatest challenges concerning the Ap/Bp stars is to understand the origin of their slow rotation and their magnetic fields. The favoured hypothesis for the latter is that the fields are fosils, which implies that the magnetic fields subsist throughout the different evolutionary phases, and in particular during the pre-main sequence phase. The existence of magnetic fields at the pre-main sequence phase is also required to explain the slow rotation of Ap/Bp stars. During the last 3 years we performed a spectropolarimetric survey of the Herbig Ae/Be stars in the field and in young clusters, in order to investigate their magnetism and rotation. These investigations have resulted in the detection and/or confirmation of magnetic fields in 8 Herbig Ae/Be stars, ranging in mass from 2 to nearly 15 solar masses. In this paper I will present the results of our survey, as well as their implications for the origin and evolution of the magnetic fields and rotation of the A and B stars.
We have found Herbig Ae/Be star candidates in the western region of the Magellanic Bridge. Using the near infrared camera SIRIUS and the 1.4 m telescope IRSF, we surveyed about 3.0 deg x 1.3 deg (24 deg < RA < 36 deg, -75 deg < Dec. < -73.7 deg) in t
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured f
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred di
H_alpha spectropolarimetry on Herbig Ae/Be stars shows that the innermost regions of intermediate mass (2 -- 15 M_sun) Pre-Main Sequence stars are flattened. This may be the best evidence to date that the higher mass Herbig Be stars are embedded in c
Ap/Bp stars are magnetic chemically peculiar early A and late B type stars of the main sequence. They exhibit peculiar surface abundance anomalies that are thought to be the result of gravitational settling and radiative levitation. The physics of di