ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-infrared Properties and Color Selection for X-ray Detected AGN in the MUSYC ECDF-S field

96   0   0.0 ( 0 )
 نشر من قبل Carolin Cardamone
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the mid-infrared colors of X-ray-detected AGN and explore mid-infrared selection criteria. Using a statistical matching technique, the likelihood ratio, over 900 IRAC counterparts were identified with a new MUSYC X-ray source catalog that includes ~1000 published X-ray sources in the Chandra Deep Field-South and Extended Chandra Deep Field-South. Most X-ray-selected AGN have IRAC spectral shapes consistent with power-law slopes, f_{nu} ~ nu^{alpha}, and display a wide range of colors, -2 < alpha < 2. Although X-ray sources typically fit to redder (more negative alpha) power-laws than non-X-ray detected galaxies, more than 50% do have flat or blue (galaxy-like) spectral shapes in the observed 3-8 micron band. Only a quarter of the X-ray selected AGN detected at 24 micron are well fit by featureless red power laws in the observed 3.6-24 micron, likely the subset of our sample whose infrared spectra are dominated by emission from the central AGN region. Most IRAC color-selection criteria fail to identify the majority of X-ray-selected AGN, finding only the more luminous AGN, the majority of which have broad emission lines. In deep surveys, these color-selection criteria select 10-20% of the entire galaxy population and miss many moderate luminosity AGN.



قيم البحث

اقرأ أيضاً

We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
184 - Lisa M. Winter 2007
The SWIFT gamma ray observatorys Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195 keV). In this paper, we present for the first time {it XMM-Newton} X-ray spectra for 22 B AT AGNs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n$_H < 3 times 10^{25}$ cm$^{-2}$), local ($<z> = 0.03$), AGN sample. We find 9/22 low absorption (n$_H < 10^{23}$ cm$^{-2}$), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of citet{rey97} and citet{geo98}, who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (14/22) have more complex spectra, well-fit by an absorbed power law at $E > 2.0$ keV. Five of the complex sources are classified as Compton-thick candidates. Further, we find four more sources with properties consistent with the hidden/buried AGN reported by Ueda {it et al.} (2007). Finally, we include a comparison of the {it XMM-Newton} EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.
We present mid-infrared spectroscopy of a sample of 16 optically faint infrared luminous galaxies obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. These sources were jointly selected from Spitzer and Chandra imaging surve ys in the NDWFS Bootes field and were selected from their bright X-ray fluxes to host luminous AGN. None of the spectra show significant emission from polycyclic aromatic hydrocarbons (PAHs; 6.2um equivalent widths <0.2um), consistent with their infrared emission being dominated by AGN. Nine of the X-ray sources show 9.7um silicate absorption features. Their redshifts are in the range 0.9<z<2.6, implying infrared luminosities of log(L{IR})=12.5-13.6 solar luminosities. The average silicate absorption strength is not as strong as that of previously targeted optically faint infrared luminous galaxies with similar mid-infrared luminosities implying that the X-ray selection favors sources behind a smaller column of Si-rich dust than non-X-ray selection. Seven of the X-ray sources have featureless power-law mid-IR spectra. We argue that the featureless spectra likely result from the sources having weak or absent silicate and PAH features rather than the sources lying at higher redshifts where these features are shifted out of the IRS spectral window. We investigate whether there are any correlations between X-ray and infrared properties and find that sources with silicate absorption features tend to have fainter X-ray fluxes and harder X-ray spectra, indicating a weak relation between the amount of silicate absorption and column density of X-ray-absorbing gas.
While massive black holes (MBHs) are known to inhabit all massive galaxies, their ubiquitous presence in dwarf galaxies has not been confirmed yet, with only a limited number of sources detected so far. Recently, some studies proposed infrared emissi on as an alternative way to identify MBHs in dwarfs, based on a similar approach usually applied to quasars. In this study, by accurately combining optical and infrared data taking into account resolution effects and source overlapping, we investigate in detail the possible limitations of this approach with current ground-based facilities, finding a quite low ($sim$0.4 per cent) fraction of active MBH in dwarfs that are luminous in mid-infrared, consistent with several previous results. Our results suggest that the infrared selection is strongly affected by several limitations that make the identification of MBHs in dwarf galaxies currently prohibitive, especially because of the very poor resolution compared to optical surveys, and the likely contamination by nearby sources, although we find a few good candidates worth further follow-ups. Optical, X-ray and radio observations, therefore, still represent the most secure way to search for MBH in dwarfs.
In this research, we provide a new, efficient method to select infrared (IR) active galatic nucleus (AGN). In the past, AGN selection in IR had been established by many studies using color-color diagrams. However, those methods have a problem in comm on that the number of bands is limited. The AKARI North Ecliptic Pole (NEP) survey was carried out by the AKARI Infrared Camera (IRC), which has 9 filters in mid-IR with a continuous wavelength coverage from 2 to 24$mu$m$^{-1}$. Based on the intrinsic different mid-IR features of AGN and star-forming galaxies (SFGs), we performed SED fitting to separate these two populations by the best-fitting model. In the X-ray AGN sample, our method by SED fitting selects 50$%$ AGNs, while the previous method by colour criteria recovers only 30$%$ of them, which is a significant improvement. Furthermore, in the whole NEP deep sample, SED fitting selects two times more AGNs than the color selection. This may imply that the black hole accretion history could be more stronger than people expected before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا