ﻻ يوجد ملخص باللغة العربية
The SWIFT gamma ray observatorys Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195 keV). In this paper, we present for the first time {it XMM-Newton} X-ray spectra for 22 BAT AGNs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n$_H < 3 times 10^{25}$ cm$^{-2}$), local ($<z> = 0.03$), AGN sample. We find 9/22 low absorption (n$_H < 10^{23}$ cm$^{-2}$), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of citet{rey97} and citet{geo98}, who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (14/22) have more complex spectra, well-fit by an absorbed power law at $E > 2.0$ keV. Five of the complex sources are classified as Compton-thick candidates. Further, we find four more sources with properties consistent with the hidden/buried AGN reported by Ueda {it et al.} (2007). Finally, we include a comparison of the {it XMM-Newton} EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we ch
Aims: Active Galactic Nuclei are known to be variable throughout the electromagnetic spectrum. An energy domain poorly studied in this respect is the hard X-ray range above 20 keV. Methods: The first 9 months of the Swift/BAT all-sky survey are use
M87 hosts a 3-6 billion solar mass black hole with a remarkable relativistic jet that has been regularly monitored in radio to TeV bands. However, hard X-ray emission gtrsim 10keV, which would be expected to primarily come from the jet or the accreti
We characterize for the first time the torus properties of an ultra-hard X-ray (14-195 keV) volume-limited (DL<40 Mpc) sample of 24 Seyfert (Sy) galaxies (BCS40 sample). The sample was selected from the Swift/BAT nine month catalog. We use high angul
The aim of this paper is to study the stellar population of galaxies hosting an active galactic nucleus (AGN). We studied a sub-sample of hard X-ray emitting AGNs from the INTEGRAL and Swift catalogs which were previously identified and characterized