ﻻ يوجد ملخص باللغة العربية
The transition probability of a Cox-Ingersoll-Ross process can be represented by a non-central chi-square density. First we prove a new representation for the central chi-square density based on sums of powers of generalized Gaussian random variables. Second we prove Marsaglias polar method extends to this distribution, providing a simple, exact, robust and efficient acceptance-rejection method for generalized Gaussian sampling and thus central chi-square sampling. Third we derive a simple, high-accuracy, robust and efficient direct inversion method for generalized Gaussian sampling based on the Beasley-Springer-Moro method. Indeed the accuracy of the approximation to the inverse cumulative distribution function is to the tenth decimal place. We then apply our methods to non-central chi-square variance sampling in the Heston model. We focus on the case when the number of degrees of freedom is small and the zero boundary is attracting and attainable, typical in foreign exchange markets. Using the additivity property of the chi-square distribution, our methods apply in all parameter regimes.
How to reconcile the classical Heston model with its rough counterpart? We introduce a lifted version of the Heston model with n multi-factors, sharing the same Brownian motion but mean reverting at different speeds. Our model nests as extreme cases
This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least squares problem. We exploit a suitable representation of the Heston characteristic fu
We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and It
We consider the stochastic volatility model $dS_t = sigma_t S_t dW_t,dsigma_t = omega sigma_t dZ_t$, with $(W_t,Z_t)$ uncorrelated standard Brownian motions. This is a special case of the Hull-White and the $beta=1$ (log-normal) SABR model, which are
Efficient sampling for the conditional time integrated variance process in the Heston stochastic volatility model is key to the simulation of the stock price based on its exact distribution. We construct a new series expansion for this integral in te