ﻻ يوجد ملخص باللغة العربية
We investigate non-linear, spherically symmetric solutions to the coupled system of a quintessence field and Einstein gravity. In the presence of a scalar potential, we find regular solutions that to an outside observer very closely resemble Schwarzschild black holes. However, these cosmon lumps have neither a horizon nor a central singularity. A stability analysis reveals that our static solutions are dynamically unstable. It remains an open question whether analogous stable solutions exist.
A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black holes horizon unex
How well is the vacuum Kerr geometry a good description of the dark, compact objects in our universe? Precision measurements of accreting matter in the deep infrared and gravitational-wave measurements of coalescing objects are finally providing answ
We prove that a generalized Schwarzschild-like ansatz can be consistently employed to construct $d$-dimensional static vacuum black hole solutions in any metric theory of gravity for which the Lagrangian is a scalar invariant constructed from the Rie
We study equilibrium configurations of a homogenous ball of matter in a bootstrapped description of gravity which includes a gravitational self-interaction term beyond the Newtonian coupling. Both matter density and pressure are accounted for as sour
A model is proposed to describe a transition from a Schwarzschild black hole of mass $M_{0}$ to a Schwarzschild black hole of mass $M_{1}$ $leq M_{0}$. The basic equations are derived from the non-vacuum Einstein field equations taking a source repre