ﻻ يوجد ملخص باللغة العربية
We investigate effects of lateral confinement on spin splitting of energy levels in 2D hole gases grown on [311] GaAs. We found that lateral confinement enhances anisotropy of spin splitting relative to the 2D gas for both confining directions. Unexpectedly, the effective $g$-factor does not depend on the 1D energy level number $N$ for $B|[0bar{1}1]$ while it has strong $N$-dependence for $B|[bar{2}33]$. Apart from quantitative difference in the spin splitting of energy levels for the two orthogonal confinement directions we also report qualitative differences in the appearance of spin-split plateaus, with non-quantized plateaus observed only for the confinement in $[0bar{1}1]$ direction. In our samples we can clearly associate the difference with anisotropy of spin-orbit interactions.
The effective g-factor of 2D holes in modulation doped mbox{p-SiGe/Ge/SiGe} structures was studied. The AC conductivity of samples with hole densities from $3.9 times 10^{11}$~to $6.2 times 10^{11}~text{cm}^{-2}$ was measured in perpendicular magneti
Recently, lithographic quantum dots in strained-Ge/SiGe have become a promising candidate for quantum computation, with a remarkably quick progression from demonstration of a quantum dot to qubit logic demonstrations. Here we present a measurement of
Due to its p-like character, the valence band in GaAs-based heterostructures offers rich and complex spin-dependent phenomena. One manifestation is the large anisotropy of Zeeman spin splitting. Using undoped, coupled quantum wells (QWs), we examine
Zeeman splitting of 1D hole subbands is investigated in quantum point contacts (QPCs) fabricated on a (311) oriented GaAs-AlGaAs heterostructure. Transport measurements can determine the magnitude of the g-factor, but cannot usually determine the sig
We report measurements of the effective $g$ factor of low-density two-dimensional holes in a Ge quantum well. Using the temperature dependence of the Shubnikov-de Haas oscillations, we extract the effective $g$ factor in a magnetic field perpendicula