ترغب بنشر مسار تعليمي؟ اضغط هنا

Unbiased computation of transition times by pathway recombination

53   0   0.0 ( 0 )
 نشر من قبل Jan Kuipers
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In many systems, the time scales of the microscopic dynamics and macroscopic dynamics of interest are separated by many orders of magnitude. Examples abound, for instance nucleation, protein folding, and chemical reactions. For these systems, direct simulation of phase space trajectories does not efficiently determine most physical quantities of interest. The last decade has seen the advent of methods circumventing brute force simulation. For most dynamical quantities, these methods all share the drawback of systematical errors. We present a novel method for generating ensembles of phase space trajectories. By sampling small pieces of these trajectories in different phase space domains and piecing them together in a smart way using equilibrium properties, we obtain physical quantities such as transition times. This method does not have any systematic error and is very efficient; the computational effort to calculate the first passage time across a free energy barrier does not increase with the height of the barrier. The strength of the method is shown in the Ising model. Accurate measurements of nucleation times span almost ten orders of magnitude and reveal corrections to classical nucleation theory.

قيم البحث

اقرأ أيضاً

Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic devices. Among other interesting p roperties, under circularly polarized light, gallium centers in GaAsN act as spin filters that dynamically polarize free and bound electrons reaching record spin polarizations (100%). Furthermore, the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical manipulation of its nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with free electrons and holes. Our results are in good agreement with existing experimental observations. In regard to the nuclear spin relaxation, the roles of nuclear dipolar and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance of the Overhauser-like magnetic field. Based on our models results we propose an experimental protocol based on time resolved spectroscopy. It consists of a pump-probe photoluminescence scheme that would allow the detection and the tracing of the electron-nucleus flip-flops through time resolved PL measurements.
We investigate the demagnetization dynamics of the cycloidal and sinusoidal phases of multiferroic TbMnO$_3$ by means of time-resolved resonant soft x-ray diffraction following excitation by an optical pump. Using orthogonal linear x-ray polarization s, we suceeded in disentangling the response of the multiferroic cycloidal spin order from the sinusoidal antiferromagnetic order in the time domain. This enables us to identify the transient magnetic phase created by intense photoexcitation of the electrons and subsequent heating of the spin system on a picosecond timescale. The transient phase is shown to be a spin density wave, as in the adiabatic case, which nevertheless retains the wave vector of the cycloidal long range order. Two different pump photon energies, 1.55 eV and 3.1 eV, lead to population of the conduction band predominantly via intersite $d$-$d$ transitions or intrasite $p$-$d$ transitions, respectively. We find that the nature of the optical excitation does not play an important role in determining the dynamics of magnetic order melting. Further, we observe that the orbital reconstruction, which is induced by the spin ordering, disappears on a timescale comparable to that of the cycloidal order, attesting to a direct coupling between magnetic and orbital orders. Our observations are discussed in the context of recent theoretical models of demagnetization dynamics in strongly correlated systems, revealing the potential of this type of measurement as a benchmark for such complex theoretical studies.
We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian ansatz and a Thomas-Fermi solution for the shape of the condensate. The regimes of validity for these two approaches are determined, and their predictions for the collapse time revealed and compared with numerical simulations. The dipolar interactions introduce anisotropy into the collapse dynamics and predominantly lead to collapse in the plane perpendicular to the axis of polarization.
One of the most fundamental quantities associated with polymer translocation through a nanopore is the translocation time $tau$ and its dependence on the chain length $N$. Our simulation results based on both the bond fluctuation Monte Carlo and Mole cular Dynamics methods confirm the original prediction $tausim N^{2 u+1}$, which scales in the same manner as the Rouse relaxation time of the chain except for a larger prefactor, and invalidates other scaling claims.
93 - T. Mertelj 2012
We study the incoherent recombination of topological defects created during a rapid quench of a charge-density-wave system through the electronic ordering transition. Using a specially devised 3-pulse femtosecond optical spectroscopy technique we fol low the evolution of the order parameter over a wide range of timescales. By careful consideration of thermal processes we can clearly identify intrinsic topological defect annihilation processes on a timescale ~30 ps and find a signature of extrinsic defect-dominated relaxation dynamics is found to occurring on longer timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا