ﻻ يوجد ملخص باللغة العربية
One of the most fundamental quantities associated with polymer translocation through a nanopore is the translocation time $tau$ and its dependence on the chain length $N$. Our simulation results based on both the bond fluctuation Monte Carlo and Molecular Dynamics methods confirm the original prediction $tausim N^{2 u+1}$, which scales in the same manner as the Rouse relaxation time of the chain except for a larger prefactor, and invalidates other scaling claims.
We investigate the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. An attractive interaction can greatly improve translocation probability. At the same time, it also increases translocation ti
We determine the scaling exponents of polymer translocation (PT) through a nanopore by extensive computer simulations of various microscopic models for chain lengths extending up to N=800 in some cases. We focus on the scaling of the average PT time
We investigate several scaling properties of a translocating homopolymer through a thin pore driven by an external field present inside the pore only using Langevin Dynamics (LD) simulation in three dimension (3D). Specifically motivated by several r
Using Langevin dynamics simulations, we investigate the dynamics of chaperone-assisted translocation of a flexible polymer through a nanopore. We find that increasing the binding energy $epsilon$ between the chaperone and the chain and the chaperone
The translocation dynamics of a polymer chain through a nanopore in the absence of an external driving force is analyzed by means of scaling arguments, fractional calculus, and computer simulations. The problem at hand is mapped on a one dimensional