ترغب بنشر مسار تعليمي؟ اضغط هنا

A deeper insight into quantum state transfer from an information flux viewpoint

103   0   0.0 ( 0 )
 نشر من قبل Carlo Di Franco
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the recently introduced concept of information flux in a many-body register in order to give an alternative viewpoint on quantum state transfer in linear chains of many spins.



قيم البحث

اقرأ أيضاً

A quantum network requires information transfer between distant quantum computers, which would enable distributed quantum information processing and quantum communication. One model for such a network is based on the probabilistic measurement of two photons, each entangled with a distant atom or atomic ensemble, where the atoms represent quantum computing nodes. A second, deterministic model transfers information directly from a first atom onto a cavity photon, which carries it over an optical channel to a second atom; a prototype with neutral atoms has recently been demonstrated. In both cases, the central challenge is to find an efficient transfer process that preserves the coherence of the quantum state. Here, following the second scheme, we map the quantum state of a single ion onto a single photon within an optical cavity. Using an ion allows us to prepare the initial quantum state in a deterministic way, while the cavity enables high-efficiency photon generation. The mapping process is time-independent, allowing us to characterize the interplay between efficiency and fidelity. As the techniques for coherent manipulation and storage of multiple ions at a single quantum node are well established, this process offers a promising route toward networks between ion-based quantum computers.
Quantum teleportation provides a disembodied way to transfer an unknown quantum state from one quantum system to another. However, all teleportation experiments to date are limited to cases where the target quantum system contains no prior quantum in formation. Here we propose a scheme for teleporting a quantum state to a quantum system with prior quantum information. By using an optical qubit-ququart entangling gate, we have experimentally demonstrated the new teleportation protocol -- teleporting a qubit to a photon preloaded with one qubit of quantum information. After the teleportation, the target photon contains two qubits of quantum information, one from the teleported qubit and the other from the pre-existing qubit. The teleportation fidelities range from $0.70$ to $0.92$, all above the classical limit of $2/3$. Our work sheds light on a new direction for quantum teleportation and demonstrates our ability to implement entangling operations beyond two-level quantum systems.
67 - G. Gatti , D. Barberena , M. Sanz 2016
We propose a decoherence protected protocol for sending single photon quantum states through depolarizing channels. This protocol is implemented via an approximate quantum adder engineered through spontaneous parametric down converters, and shows hig her success probability than distilled quantum teleportation protocols for distances below a threshold depending on the properties of the channel.
The polarization states of lasers are crucial issues both for practical applications and fundamental research. In general, they depend in a combined manner on the properties of the gain material and on the structure of the electromagnetic modes. In t his paper, we address this issue in the case of solid-state organic lasers, a technology which enables to vary independently gain and mode properties. Different kinds of resonators are investigated: in-plane micro-resonators with Fabry-Perot, square, pentagon, stadium, disk, and kite shapes, and external vertical resonators. The degree of polarization P is measured in each case. It is shown that although TE modes prevail generally (P>0), kite-shaped micro-laser generates negative values for P, i.e. a flip of the dominant polarization which becomes mostly TM polarized. We at last investigated two degrees of freedom that are available to tailor the polarization of organic lasers, in addition to the pump polarization and the resonator geometry: upon using resonant energy transfer (RET) or upon pumping the laser dye to an higher excited state. We then demonstrate that significantly lower P factors can be obtained.
We introduce and analyse the problem of encoding classical information into different resources of a quantum state. More precisely, we consider a general class of communication scenarios characterised by encoding operations that commute with a unique resource destroying map and leave free states invariant. Our motivating example is given by encoding information into coherences of a quantum system with respect to a fixed basis (with unitaries diagonal in that basis as encodings and the decoherence channel as a resource destroying map), but the generality of the framework allows us to explore applications ranging from super-dense coding to thermodynamics. For any state, we find that the number of messages that can be encoded into it using such operations in a one-shot scenario is upper-bounded in terms of the information spectrum relative entropy between the given state and its version with erased resources. Furthermore, if the resource destroying map is a twirling channel over some unitary group, we find matching one-shot lower-bounds as well. In the asymptotic setting where we encode into many copies of the resource state, our bounds yield an operational interpretation of resource monotones such as the relative entropy of coherence and its corresponding relative entropy variance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا