ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Impact of Galaxy Interactions over Seven Billion Years with CAS

82   0   0.0 ( 0 )
 نشر من قبل Sarah Miller
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sarah H. Miller




اسأل ChatGPT حول البحث

We explore galaxy assembly over the last seven billion years by characterizing normal galaxies along the Hubble sequence, against strongly disturbed merging/interacting galaxies with the widely used CAS system of concentration (C), asymmetry (A), and clumpiness (S) parameters, as well as visual classification. We analyze Hubble Space Telescope (HST) ACS images of ~4000 intermediate and high mass (> 10^9 solar masses) galaxies from the GEMS survey, one of the largest HST surveys conducted to date in two filters. We explore the effectiveness of the CAS criteria [A>S and A>~0.35] in separating normal and strongly disturbed galaxies at different redshifts, and quantify the recovery and contamination rate. We also compare the average star formation rate and the cosmic star formation rate density as a function of redshift between normal and interacting systems identified by CAS.


قيم البحث

اقرأ أيضاً

Bars drive the dynamical evolution of disk galaxies by redistributing mass and angular momentum, and they are ubiquitous in present-day spirals. Early studies of the Hubble Deep Field reported a dramatic decline in the rest-frame optical bar fraction f_opt to below 5% at redshifts z>0.7, implying that disks at these epochs are fundamentally different from present-day spirals. The GEMS bar project, based on ~8300 galaxies with HST-based morphologies and accurate redshifts over the range 0.2-1.1, aims at constraining the evolution and impact of bars over the last 8 Gyr. We present early results indicating that f_opt remains nearly constant at ~30% over the range z=0.2-1.1,corresponding to lookback times of ~2.5-8 Gyr. The bars detected at z>0.6 are primarily strong with ellipticities of 0.4-0.8. Remarkably, the bar fraction and range of bar sizes observed at z>0.6 appear to be comparable to the values measured in the local Universe for bars of corresponding strengths. Implications for bar evolution models are discussed.
We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field d eep parallel observations. These surveys provides an effective volume of 0.6-1.2 x 10^6 Mpc^3 over this epoch, allowing us to perform a robust search for faint (M_UV=-18) and bright (M_UV < -21) galaxies. We select candidate galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5<z<8.5, with >1000 galaxies at z~6-8. We measure the luminosity function using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our results agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z>6, with M* ~ -21 at z>5, different than that inferred based on previous trends at lower redshift. At z=8, a single power-law provides an equally good fit to the UV luminosity function, while at z=6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift. We measure the evolution of the cosmic star-formation rate density, correcting for dust attenuation, and find that it declines as (1+z)^(-4.3 +/- 0.5) at z>4, consistent with observations at z>9. Our observations are consistent with a reionization history that starts at z>10, completes at z>6, and reaches a midpoint (x_HII = 0.5) at 6.7<z<9.4. Finally, our observations predict that the abundance of bright z=9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z~10 galaxies. [abridged]
A galaxys orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space, however it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centers of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show for the first time that similar alignments are seen at earlier epochs when the universe was only one-third its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
The variability of the spectral solar irradiance (SSI) over the course of the 11-year solar cycle is one of the manifestations of solar magnetic activity. There is a strong evidence that the SSI variability has an effect on the Earths atmosphere. The faster rotation of the Sun in the past lead to a more vigorous action of solar dynamo and thus potentially to larger amplitude of the SSI variability on the timescale of the solar activity cycle. This could led to a stronger response of the Earths atmosphere as well as other solar system planets atmospheres to the solar activity cycle. We calculate the amplitude of the SSI and TSI variability over the course of the solar activity cycle as a function of solar age. We employ the relationship between the stellar magnetic activity and the age based on observations of solar twins. Using this relation we reconstruct solar magnetic activity and the corresponding solar disk area coverages by magnetic features (i.e. spots and faculae) over the last four billion years. These disk coverages are then used to calculate the amplitude of the solar-cycle SSI variability as a function of wavelength and solar age. Our calculations show that the young Sun was significantly more variable than the present Sun. The amplitude of the solar-cycle Total Solar Irradiance (TSI) variability of the 600 Myr old Sun was about 10 times larger than that of the present Sun. Furthermore, the variability of the young Sun was spot-dominated (the Sun being brighter at the activity minimum than in the maximum), i.e. the Sun was overall brighter at activity minima than at maxima. The amplitude of the TSI variability decreased with solar age until it reached a minimum value at 2.8 Gyr. After this point, the TSI variability is faculae-dominated (the Sun is brighter at the activity maximum) and its amplitude increases with age.
We measure the evolution of the $M_{rm BH}-M_*$ relation using 584 uniformly-selected SDSS quasars at $0.2<z<0.8$. The black-hole masses ($M_{rm BH}$) are derived from the single-epoch virial mass estimator using the H$beta$ emission line, and span t he range $7.0<{rm log},M_{rm BH}/M_odot<9.5$. The host-galaxy stellar masses ($M_*$), which cover the interval $10.0<{rm log},M_* / M_odot <11.5$, are determined by performing two-dimensional quasar-host decomposition of the Hyper Suprime-Cam images and spectral energy distribution fitting. To quantify sample-selection biases and measurement uncertainties on the mass terms, a mock quasar sample is constructed to jointly constrain the redshift evolution of the $M_{rm BH}-M_*$ relation and its intrinsic scatter ($sigma_mu$) through forward modeling. We find that the level of evolution is degenerate with $sigma_mu$, such that both positive mild evolution (i.e, $M_{rm BH}/M_*$ increases with redshift) with a small $sigma_mu$, and negative mild evolution with a larger $sigma_mu$ are consistent with our data. The posterior distribution of $sigma_mu$ enables us to put a strong constraint on the intrinsic scatter of the $M_{rm BH}-M_*$ relation, which has a best inference of $0.25_{-0.04}^{+0.03}$ dex, consistent with the local value. The redshift evolution of the $M_{rm BH}-M_*$ relation relative to the local relation is constrained to be $(1+z)^{0.12_{-0.27}^{+0.28}}$, in agreement with no significant evolution since $zsim0.8$. The tight and non-evolving $M_{rm BH}-M_*$ relation is suggestive of a coupling through AGN feedback or/and a common gas supply at work, thus restricting the mass ratio of galaxies and their black holes to a limited range. Given the considerable stellar disk component, the $M_{rm BH}-M_{rm bulge}$ relation may evolve as previously seen at higher redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا