ﻻ يوجد ملخص باللغة العربية
Bars drive the dynamical evolution of disk galaxies by redistributing mass and angular momentum, and they are ubiquitous in present-day spirals. Early studies of the Hubble Deep Field reported a dramatic decline in the rest-frame optical bar fraction f_opt to below 5% at redshifts z>0.7, implying that disks at these epochs are fundamentally different from present-day spirals. The GEMS bar project, based on ~8300 galaxies with HST-based morphologies and accurate redshifts over the range 0.2-1.1, aims at constraining the evolution and impact of bars over the last 8 Gyr. We present early results indicating that f_opt remains nearly constant at ~30% over the range z=0.2-1.1,corresponding to lookback times of ~2.5-8 Gyr. The bars detected at z>0.6 are primarily strong with ellipticities of 0.4-0.8. Remarkably, the bar fraction and range of bar sizes observed at z>0.6 appear to be comparable to the values measured in the local Universe for bars of corresponding strengths. Implications for bar evolution models are discussed.
One third of present-day spirals host optically visible strong bars that drive their dynamical evolution. However, the fundamental question of how bars evolve over cosmological times has yet to be addressed, and even the frequency of bars at intermed
We identified 24 SiIV absorption systems with z <~ 1 from a blind survey of 49 low-redshift quasars with archival Hubble Space Telescope ultraviolet spectra. We relied solely on the characteristic wavelength separation of the doublet to automatically
We measure the redshift evolution of the bar fraction in a sample of 2380 visually selected disc galaxies found in Cosmic Evolution Survey (COSMOS) Hubble Space Telescope (HST) images. The visual classifications used to identify both the disc sample
The variability of the spectral solar irradiance (SSI) over the course of the 11-year solar cycle is one of the manifestations of solar magnetic activity. There is a strong evidence that the SSI variability has an effect on the Earths atmosphere. The
Using a sample of 67 galaxies from the MIGHTEE Survey Early Science data we study the HI-based baryonic Tully-Fisher relation (bTFr), covering a period of $sim$one billion years ($0 leq z leq 0.081 $). We consider the bTFr based on two different rota