ﻻ يوجد ملخص باللغة العربية
The cosmic microwave background (CMB) polarisation and the 21 cm line fluctuations are powerful probes of cosmological reionisation. We study how the cross-correlation between the CMB polarisation (E-modes) and the 21 cm line fluctuations can be used to gain further understanding of the reionisation history, within the framework of inhomogeneous reionisation. Since the E-mode polarisation reflects the amplitude of the quadrupole component of the CMB temperature fluctuations, the angular power spectrum of the cross-correlation exhibits oscillations at all multipoles. The first peak of the power spectrum appears at the scale corresponding to the quadrupole at the redshift that is probed by the 21 cm line fluctuations. The peak reaches its maximum value in redshift when the average ionisation fraction of the universe is about half. On the other hand, on small scales, there is a damping that depends on the duration of reionisation. Thus, the cross-correlation between the CMB polarisation and the 21 cm line fluctuations has the potential to constrain accurately the epoch and the duration of reionisation.
We investigate the impact of neutral hydrogen (HI) in galaxies on the statistics of 21-cm fluctuations using analytic and semi-numerical modelling. Following the reionisation of hydrogen the HI content of the Universe is dominated by damped absorptio
In this letter, 21 cm intensity maps acquired at the Green Bank Telescope are cross-correlated with large-scale structure traced by galaxies in the WiggleZ Dark Energy Survey. The data span the redshift range 0.6 < z < 1 over two fields totaling ~41
It has recently been suggested that the power spectrum of redshifted 21cm fluctuations could be used to measure the scale of baryonic acoustic oscillations (BAOs) during the reionisation era. The resulting measurements are potentially as precise as t
We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionisation (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the und
The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 2