ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project. I. The Lithium-, s-, and r-Enhanced Metal-Poor Giant HKII 17435-00532

96   0   0.0 ( 0 )
 نشر من قبل Ian Roederer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo (CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R~15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H]=-2.2) star has an unusually high lithium abundance (log eps (Li)=+2.1), mild carbon ([C/Fe]=+0.7) and sodium ([Na/Fe]=+0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe]=+0.8) and r-process ([Eu/Fe]=+0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally-pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current non-detection of radial velocity variations (over ~180 days), it is possible that HKII 17435-00532 is in a long-period or highly-inclined binary system, similar to other stars with similar n-capture enrichment patterns.

قيم البحث

اقرأ أيضاً

83 - Julie K. Hollek 2011
We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrog raph snapshot spectra (R~15,000) and corresponding high-resolution (R~35,000) Magellan MIKE spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H]<-3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]<-3. We also find four neutron-capture enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H]<-3.0) of the brightest stars included in CASH and are used to calibrate a newly-developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.
106 - Julie K. Hollek 2015
We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 486 3 K, log g = 1.25, vmic = 2.20 km/s, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has [C/Fe] = 1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as CEMP-r/s star. Based on abundance comparisons with AGB star nucleosynthesis models, we suggest a new physically-motivated origin and classification scheme for CEMP-s stars and the still poorly-understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1-D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414-0343 to have arisen from a >1.3 Msun mass AGB star and a late-time mass transfer, that transformed HE 0414-0343 into a CEMP-sC star. We also find the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars.
Very high-quality spectra of 24 metal-poor halo dwarfs and subgiants have been acquired with ESOs VLT/UVES for the purpose of determining Li isotopic abundances. The derived 1D, non-LTE 7Li abundances from the LiI 670.8nm line reveal a pronounced dep endence on metallicity but with negligible scatter around this trend. Very good agreement is found between the abundances from the LiI 670.8nm line and the LiI 610.4nm line. The estimated primordial 7Li abundance is $7Li/H = 1.1-1.5 x 10^-10, which is a factor of three to four lower than predicted from standard Big Bang nucleosynthesis with the baryon density inferred from the cosmic microwave background. Interestingly, 6Li is detected in nine of our 24 stars at the >2sigma significance level. Our observations suggest the existence of a 6Li plateau at the level of log 6Li = 0.8; however, taking into account predictions for 6Li destruction during the pre-main sequence evolution tilts the plateau such that the 6Li abundances apparently increase with metallicity. Our most noteworthy result is the detection of 6Li in the very metal-poor star LP815-43. Such a high 6Li abundance during these early Galactic epochs is very difficult to achieve by Galactic cosmic ray spallation and alpha-fusion reactions. It is concluded that both Li isotopes have a pre-Galactic origin. Possible 6Li production channels include proto-galactic shocks and late-decaying or annihilating supersymmetric particles during the era of Big Bang nucleosynthesis. The presence of 6Li limits the possible degree of stellar 7Li depletion and thus sharpens the discrepancy with standard Big Bang nucleosynthesis.
The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Ga lactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later mass transfer of processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over 8 years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m/s were determined by cross-correlation against an optimized template. 14 of the programme stars exhibit no significant RV variation over this period, while 3 are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18+-6% for the sample. Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies should account for such mechanisms.
259 - L. Sbordone 2012
We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progr essive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The meltdown of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا