ﻻ يوجد ملخص باللغة العربية
The generation of entangled photon pairs by parametric down--conversion from solid state CW lasers with small coherence time is theoretically and experimentally analyzed. We consider a compact and low-cost setup based on a two-crystal scheme with Type-I phase matching. We study the effect of the pump coherence time over the entangled state visibility and over the violation of Bells inequality, as a function of the crystals length. The full density matrix is reconstructed by quantum tomography. The proposed theoretical model is verified using a purification protocol based on a compensation crystal.
Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components in
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast timescales making it very
Entangled photon pairs have been promised to deliver a substantial quantum advantage for two-photon absorption spectroscopy. However, recent work has challenged the previously reported magnitude of quantum enhancement in two-photon absorption. Here,
While two-photon absorption (TPA) and other forms of nonlinear interactions of molecules with isolated time-frequency-entangled photon pairs (EPP) have been predicted to display a variety of fascinating effects, their potential use in practical quant
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge