ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the Important Role of Groups in the Evolution of Massive Galaxies: Insights from an Infrared Passive Sequence at Intermediate Redshift

153   0   0.0 ( 0 )
 نشر من قبل Sean McGee
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. J. Wilman




اسأل ChatGPT حول البحث

The most massive galaxies in the Universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models, we focus on the group scale haloes which host most of these galaxies. A stellar mass selected M_* >~ 2x10^10M_sol sample at z~0.4 is constructed within the CNOC2 redshift survey. A sensitive Mid InfraRed (MIR) IRAC colour is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early-types) define a tight MIR colour sequence (Infrared Passive Sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at 8microns (InfraRed-Excess or IRE galaxies). They include all known morphological late-types. Comparison with EW[OII] shows that MIR colour is highly sensitive to low levels of activity, and allows us to separate dusty-active from passive galaxies. The fraction of IRE galaxies, f(IRE) drops with M_*, such that f(IRE)=0.5 at a ``crossover mass of ~1.3x10^11M_sol. Within our optically-defined group sample there is a strong and consistent deficit in f(IRE) at all masses, and most clearly at M_* >~10^11M_sol. Using a mock galaxy catalogue derived from the Millenium Simulation we show that the observed trend of f(IRE) with M_* can be explained if suppression of star formation occurs primarily in the group environment, and particularly for M_*>~10^11M_sol galaxies. In this way, downsizing can be driven solely by structure growth in the Universe.


قيم البحث

اقرأ أيضاً

Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11 ) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.
Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Un iverse. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxies, the well-known correlation between stellar mass and SFR. We aim to understand the causes of their high star formation and quantify the percentage of DSFGs that lie above the MS. We adopted a multi-wavelength approach with data from optical to submillimetre wavelengths from surveys at the North Ecliptic Pole (NEP) to study a submillimetre sample of high-redshift galaxies. Two submillimetre selection methods were used, including: sources selected at 850$mathrm{, mu m}$ with the Sub-millimetre Common-User Bolometer Array 2) SCUBA-2 instrument and {it Herschel}-Spectral and Photometric Imaging Receiver (SPIRE) selected sources (colour-colour diagrams and 500$mathrm{, mu m}$ risers), finding that 185 have good multi-wavelength coverage. The resulting sample of 185 high-z candidates was further studied by spectral energy distribution (SED) fitting with the CIGALE fitting code. We derived photometric redshifts, stellar masses, SFRs, and additional physical parameters, such as the infrared luminosity and active galactic nuclei (AGN) contribution. We find that the different results in the literature are, only in part, due to selection effects. The difference in measured SFRs affects the position of DSFGs on the MS of galaxies; most of the DSFGs lie on the MS (60%). Finally, we find that the star formation efficiency (SFE) depends on the epoch and intensity of the star formation burst in the galaxy; the later the burst, the more intense the star formation.
We have undertaken a pilot project to measure the rotation velocities of spiral galaxies in the redshift range 0.18 < z < 0.4 using high dispersion long slit spectroscopy obtained with the Palomar 5m telescope. One field galaxy and three cluster obje cts known to have strong emission lines were observed over wavelength ranges covering the redshifted lines of [OII], CaII K, H beta, and [OIII]. Two of the objects show extended line emission that allows the tracing of the rotation curve in one or more lines. A line width similar to that obtained with single dish telescopes for the 21-cm HI line observed in lower redshift galaxies can be derived from the observed H beta, [OII], and [OIII] emission by measuring a characteristic width from the velocity histogram. These moderately distant galaxies have much stronger emission lines than typical low-redshift spirals but they appear to be kinematically similar. Application of the Tully-Fisher relation suggests that the two galaxies with rotation curves are intrinsically brighter at R-band than nearby galaxies.
We analyze how passive galaxies at z $sim$ 1.5 populate the mass-size plane as a function of their stellar age, to understand if the observed size growth with time can be explained with the appearance of larger quenched galaxies at lower redshift. We use a sample of 32 passive galaxies extracted from the Wide Field Camera 3 Infrared Spectroscopic Parallel (WISP) survey with spectroscopic redshift 1.3 $lesssim$ z $lesssim$ 2.05, specific star-formation rates lower than 0.01 Gyr$^{-1}$, and stellar masses above 4.5 $times$ 10$^{10}$ M$_odot$. All galaxies have spectrally determined stellar ages from fitting of their rest-frame optical spectra and photometry with stellar population models. When dividing our sample into young (age $leq$ 2.1 Gyr) and old (age $>$ 2.1 Gyr) galaxies we do not find a significant trend in the distributions of the difference between the observed radius and the one predicted by the mass-size relation. This result indicates that the relation between the galaxy age and its distance from the mass-size relation, if it exists, is rather shallow, with a slope alpha $gtrsim$ -0.6. At face value, this finding suggests that multiple dry and/or wet minor mergers, rather than the appearance of newly quenched galaxies, are mainly responsible for the observed time evolution of the mass-size relation in passive galaxies.
A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z~3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Pa ssive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2-1) emission in 8 massive (Mstar ~ 10^11 Msol) galaxies at z~0.7 selected to lie a factor of 3-10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census (LEGA-C) survey. We significantly detect half the sample, finding molecular gas fractions <~0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population over-predict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا