ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the metal content of the intra-cluster medium with hydrodynamical simulations

305   0   0.0 ( 0 )
 نشر من قبل Dunja Fabjan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparison between simulation results and X-ray observational data on the evolution of the metallicity of the intra-cluster medium (ICM). The simulations of galaxy clusters were performed with the Tree-SPH Gadget2 code that includes a detailed model of chemical evolution, by assuming three different shapes for the stellar initial mass function (IMF), namely the Salpeter (1955), Kroupa (2001) and Arimoto-Yoshii (1987) IMF. Our simulations predict significant radial gradients of the Iron abundance, which extend over the whole cluster virialized region. At larger radii, we do not detect any flattening of the metallicity profiles. As for the evolution of the ICM metal (Iron) abundance out to z=1, we find that it is determined by the combined action of (i) the sinking of already enriched gas, (ii) the ongoing metal production in galaxies and (iii) the locking of ICM metals in newborn stars. As a result, rather than suppressing the metallicity evolution, stopping star formation at z=1 has the effect of producing an even too fast evolution of the emission-weighted ICM metallicity with too high values at low redshift. Finally, we compare simulations with the observed rate of type-Ia supernovae per unit B-band luminosity (SnU_B). We find that our simulated clusters do not reproduce the decreasing trend of SnU_B at low redshift, unless star formation is truncated at z=1.



قيم البحث

اقرأ أيضاً

The high metallicity of the intra-cluster medium (ICM) is generally interpreted on the base of the galactic wind scenario for elliptical galaxies. In this framework, we develop a toy-model to follow the chemical evolution of the ICM, formulated in an alogy to chemical models for individual galaxies. The model computes the galaxy formation history (GFH) of cluster galaxies, connecting the final luminosity function (LF) to the corresponding metal enrichment history of the ICM. The observed LF can be reproduced with a smooth, Madau-plot like GFH peaking at z~ 1-2, plus a burst of formation of dwarf galaxies at high redshift. The model is used to test the response of the predicted metal content and abundance evolution of the ICM to varying input galactic models. The chemical enrichment is computed from galactic yields based on models of elliptical galaxies with a variable initial mass function (IMF), favouring the formation of massive stars at high redshift and/or in more massive galaxies. For a given final galactic luminosity, these model ellipticals eject into the ICM a larger quantity of gas and of metals than do standard models based on the Salpeter IMF. However, a scenario in which the IMF varies with redshift as a consequence of the effect of the the cosmic background temperature on the Jeans mass scale, appears to be too mild to account for the observed metal production in clusters. The high iron-mass-to-luminosity-ratio of the ICM can be reproduced only by assuming a more dramatic variation of the typical stellar mass, in line with other recent findings. The mass in the wind-ejected gas is predicted to exceed the mass in galaxies by a factor of 1.5-2 and to constitute roughly half of the intra-cluster gas.
We present numerical simulations of galaxy clusters which include interaction processes between the galaxies and the intra-cluster gas. The considered interaction processes are galactic winds and ram-pressure stripping, which both transfer metal-enri ched interstellar medium into the intra-cluster gas and hence increase its metallicity. We investigate the efficiency and time evolution of the interaction processes by simulated metallicity maps, which are directly comparable to those obtained from X-ray observations. We find that ram-pressure stripping is more efficient than quiet (i.e. non-starburst driven) galactic winds in the redshift interval between 1 and 0. The expelled metals are not mixed immediately with the intra-cluster gas, but inhomogeneities are visible in the metallicity maps. Even stripes of higher metallicity that a single galaxy has left behind can be seen. The spatial distribution of the metals transported by ram-pressure stripping and by galactic winds are very different for massive clusters: the former process yields a centrally concentrated metal distribution while the latter results in an extended metal distribution.
259 - W. Domainko 2004
We present numerical simulations of the dynamical and chemical evolution of galaxy clusters. X-ray spectra show that the intra-cluster medium contains a significant amount of metals. As heavy elements are produced in the stars of galaxies material fr om the galaxies must have been expelled to enrich the ambient medium. We have performed hydrodynamic simulations investigating various processes. In this presentation we show the feedback from gas which is stripped from galaxies by ram-pressure stripping. The efficiency, resulting spatial distribution of the metals and the time dependency of this enrichment process on galaxy cluster scale is shown.
56 - Antonio Pipino 2002
We compute the chemical and thermal history of the intra-cluster medium in rich and poor clusters under the assumption that supernovae (I, II) are the major responsible both for the chemical enrichment and the heating of the intra-cluster gas. We ass ume that only ellipticals and S0 galaxies contribute to the enrichment and heating of the intra-cluster gas through supernova driven winds and explore several prescriptions for describing the feed-back between supernovae and the interstellar medium in galaxies. We integrate then the chemical and energetical contributions from single cluster galaxies over the cluster luminosity function and derive the variations of these quantities as functions of the cosmic time. We reach the following conclusions: i) while type II supernovae dominates the chemical enrichment and energetics inside the galaxies, type Ia supernovae play a predominant role in the intra-cluster medium, ii) galaxy models, which reproduce the observed chemical abundances and abundance ratios in the intra-cluster medium, predict a maximum of 0.3-0.4 keV per particle of energy input, a result obtained by assuming that type Ia supernovae contribute 100% of their initial blast wave energy whereas type II supernovae contribute only by a few percents of their initial energy.
69 - Silvano Molendi 2004
The Intra-Cluster Medium (ICM) is a rarefied, hot, highly ionized, metal rich, weakly magnetized plasma. In these proceeding, after having reviewed some basic ICM properties, I discuss recent results obtained with the BeppoSAX, XMM-Newton and Chandra satellites. These results are summarized in the following five points. 1) Currently available hard X-ray data does not allow us to constrain B fields in radio halos, the advent of hard X-ray telescopes in a few years may change the situation substantially. 2) There is mounting evidence that temperature profiles of clusters at large radii decline; however investigation of the outermost regions will have to await a new generation of yet unplanned but technologically feasible experiments. 3) The ICM is polluted with metals, the enrichment has probably occurred early on in the clusters life. The abundance excess observed at the center of CC clusters is due to the giant elliptical always found in these systems. 4) Chandra and XMM-Newton observations of relaxed clusters have falsified the previously accepted cooling flow model, heating mechanisms that may offset the cooling are actively being sought. 5) The superb angular resolution of Chandra is allowing us to trace a previously unknown phenomenon intimately related to the formation of galaxy clusters and of their cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا