ترغب بنشر مسار تعليمي؟ اضغط هنا

The Regulation of Cooling and Star Formation in Luminous Galaxies by AGN Feedback and the Cooling-Time/Entropy Threshold for the Onset of Star Formation

62   0   0.0 ( 0 )
 نشر من قبل David Rafferty
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Rafferty




اسأل ChatGPT حول البحث

Using broadband optical imaging and Chandra X-ray data for a sample of 46 cluster central dominant galaxies (CDGs), we investigate the connection between star formation, the intracluster medium (ICM), and the central active galactic nucleus (AGN). We report the discovery of a remarkably sharp threshold for the onset of star formation that occurs when the central cooling time of the hot atmosphere falls below ~ 5x10^8 yr, or equivalently when the central entropy falls below ~ 30 keV cm^2. In addition to this criterion, star formation in cooling flows also appears to require that the X-ray and galaxy centroids lie within ~ 20 kpc of each other, and that the jet (cavity) power is smaller than the X-ray cooling luminosity. These three criteria, together with the high ratio of cooling time to AGN outburst (cavity) age across our sample, directly link the presence of star formation and AGN activity in CDGs to cooling instabilities in the intracluster plasma. Our results provide compelling evidence that AGN feedback into the hot ICM is largely responsible for regulating cooling and star formation in the cores of clusters, leading to the significant growth of supermassive black holes in CDGs at late times.

قيم البحث

اقرأ أيضاً

Population III stars are believed to have been more massive than typical stars today and to have formed in relative isolation. The thermodynamic impact of metals is expected to induce a transition leading to clustered, low-mass Population II star for mation. In this work, we present results from three cosmological simulations, only differing in gas metallicity, that focus on the impact of metal fine-structure line cooling on the formation of stellar clusters in a high-redshift atomic cooling halo. Introduction of sink particles allows us to follow the process of gas hydrodynamics and accretion onto cluster stars for 4 Myr corresponding to multiple local free-fall times. At metallicities at least $10^{-3}, Z_{odot}$, gas is able to reach the CMB temperature floor and fragment pervasively resulting in a stellar cluster of size $sim1$ pc and total mass $sim1000, M_{odot}$. The masses of individual sink particles vary, but are typically $sim100, M_{odot}$, consistent with the Jeans mass when gas cools to the CMB temperature, though some solar mass fragments are also produced. At the low metallicity of $10^{-4}, Z_{odot}$, fragmentation is completely suppressed on scales greater than 0.01 pc and total stellar mass is lower by a factor of 3 than in the higher metallicity simulations. The sink particle accretion rates, and thus their masses, are determined by the mass of the gravitationally unstable gas cloud and the prolonged gas accretion over many Myr. The simulations thus exhibit features of both monolithic collapse and competitive accretion. Even considering possible dust induced fragmentation that would occur at higher densities, the formation of a bona fide stellar cluster seems to require metal line cooling and metallicities of at least $10^{-3}, Z_{odot}$.
Understanding star formation is problematic as it originates in the large scale dynamics of a galaxy but occurs on the small scale of an individual star forming event. This paper presents the first numerical simulations to resolve the star formation process on sub-parsec scales, whilst also following the dynamics of the interstellar medium (ISM) on galactic scales. In these models, the warm low density ISM gas flows into the spiral arms where orbit crowding produces the shock formation of dense clouds, held together temporarily by their external pressure. Cooling allows the gas to be compressed to sufficiently high densities that local regions collapse under their own gravity and form stars. The star formation rates follow a Schmidt-Kennicutt Sigma_{SFR} ~ Sigma_{gas}^{1.4} type relation with the local surface density of gas while following a linear relation with the cold and dense gas. Cooling is the primary driver of star formation and the star formation rates as it determines the amount of cold gas available for gravitational collapse. The star formation rates found in the simulations are offset to higher values relative to the extragalactic values, implying a constant reduction, such as from feedback or magnetic fields, is likely to be required. Intriguingly, it appears that a spiral or other convergent shock and the accompanying thermal instability can explain how star formation is triggered, generate the physical conditions of molecular clouds and explain why star formation rates are tightly correlated to the gas properties of galaxies.
Aims. We investigate the effects of ionising photons on accretion and stellar mass growth in a young star forming region, using a Monte Carlo radiation transfer code coupled to a smoothed particle hydrodynamics (SPH) simulation. Methods. We introduce the framework with which we correct stellar cluster masses for the effects of photoionising (PI) feedback and compare to the results of a full ionisation hydrodynamics code. Results. We present results of our simulations of star formation in the spiral arm of a disk galaxy, including the effects of photoionising radiation from high mass stars. We find that PI feedback reduces the total mass accreted onto stellar clusters by approximately 23 per cent over the course of the simulation and reduces the number of high mass clusters, as well as the maximum mass attained by a stellar cluster. Mean star formation rates (SFRs) drop from 0.042 solar masses per year in our control run to 0.032 solar masses per year after the inclusion of PI feedback with a final instantaneous SFR reduction of 62 per cent. The overall cluster mass distribution appears to be affected little by PI feedback. Conclusions. We compare our results to the observed extra-galactic Schmidt-Kennicutt relation and the observed properties of local star forming regions in the Milky Way and find that internal photoionising (PI) feedback is unlikely to reduce star formation rates by more than a factor of approximately 2 and thus may play only a minor role in regulating star formation.
Large-scale, broad outflows are common in active galaxies. In systems where star formation coexists with an AGN, it is unclear yet the role that both play on driving the outflows. In this work we present three-dimensional radiative-cooling MHD simula tions of the formation of these outflows, considering the feedback from both the AGN and supernovae-driven winds. We find that a large-opening-angle AGN wind develops fountain structures that make the expanding gas to fall back. Furthermore, it exhausts the gas near the nuclear region, extinguishing star formation and accretion within a few 100.000 yr, which establishes the duty cycle of these outflows. The AGN wind accounts for the highest speed features in the outflow with velocities around 10.000 km s$^{-1}$ (as observed in UFOs), but these are not as cold and dense as required by observations of molecular outflows. The SNe-driven wind is the main responsible for the observed mass-loading of the outflows.
38 - G. F. Lewis 1999
We present the analysis of a suite of simulations of a Virgo mass galaxy cluster. Undertaken within the framework of standard cold dark matter cosmology, these simulations were performed at differing resolutions and with increasingly complex physical processes, with the goal of identifying the effects of each on the evolution of the cluster. We focus on the cluster at the present epoch and examine properties including the radial distributions of density, temperature, entropy and velocity. We also map `observable projected properties such as the surface mass density, X-ray surface brightness and SZ signature. We identify significant differences between the simulations, which highlights the need for caution when comparing numerical simulations to observations of galaxy clusters. While resolution affects the inner density profile in dark matter simulations, the addition of a gaseous component, especially one that cools and forms stars, affects the entire cluster. We conclude that both resolution and included physical processes play an important role in simulating the formation and evolution of galaxy clusters. Therefore, physical inferences drawn from simulations that do not include a gaseous component that can cool and form stars present a poor representation of reality. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا