ترغب بنشر مسار تعليمي؟ اضغط هنا

A new red giant-based distance modulus of 13.3 Mpc to the Antennae galaxies and its consequences

41   0   0.0 ( 0 )
 نشر من قبل Ivo Saviane
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ivo Saviane




اسأل ChatGPT حول البحث

The Antennae galaxies are the closest example of an ongoing major galaxy merger, and thereby represent a unique laboratory for furthering the understanding of the formation of exotic objects (e.g., tidal dwarf galaxies, ultra-luminous X-ray sources, super-stellar clusters, etc). In a previous paper HST/WFPC2 observations were used to demonstrate that the Antennae system might be at a distance considerably less than that conventionally assumed in the literature. Here we report new, much deeper HST/ACS imaging that resolves the composite stellar populations, and most importantly, reveals a well-defined red giant branch. The tip of this red giant branch (TRGB) is unambiguously detected at Io(TRGB)=26.65 +/- 0.09 mag. Adopting the most recent calibration of the luminosity of the TRGB then yields a distance modulus for the Antennae of (m-M)o= 30.62 +/- 0.17 corresponding to a distance of 13.3 +/- 1.0 Mpc. This is consistent with our earlier result, once the different calibrations for the standard candle are considered. We briefly discuss the implications of this now well determined shorter distance.

قيم البحث

اقرأ أيضاً

Traditionally, the distance to NGC 4038/39 has been derived from the systemic recession velocity, yielding about 20 Mpc for H_0 = 72 km/s/Mpc. Recently, this widely adopted distance has been challenged based on photometry of the presumed tip of the r ed giant branch (TRGB), which seems to yield a shorter distance of 13.3+-1.0 Mpc and, with it, nearly 1 mag lower luminosities and smaller radii for objects in this prototypical merger. Here we present a new distance estimate based on observations of the Type Ia supernova (SN) 2007sr in the southern tail, made at Las Campanas Observatory as part of the Carnegie Supernova Project. The resulting distance of D(SN Ia) = 22.3+-2.8 Mpc [(m-M)_0 = 31.74+-0.27 mag] is in good agreement with a refined distance estimate based on the recession velocity and the large-scale flow model developed by Tonry and collaborators, D(flow) = 22.5+-2.8 Mpc. We point out three serious problems that a short distance of 13.3 Mpc would entail, and trace the claimed short distance to a likely misidentification of the TRGB. Reanalyzing Hubble Space Telescope (HST) data in the Archive with an improved method, we find a TRGB fainter by 0.9 mag and derive from it a preliminary new TRGB distance of D(TRGB) = 20.0+-1.6 Mpc. Finally, assessing our three distance estimates we recommend using a conservative, rounded value of D = 22+-3 Mpc as the best currently available distance to The Antennae.
PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ~20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between y oung stars, HII regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ~4 to ~15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.
We present a method for isolating a clean sample of red giant stars in the outerregions of the Andromeda spiral galaxy (M31) from an ongoing spectroscopic survey using the DEIMOS instrument on the Keck 10-m telescope. The survey aims to study the kin ematics, global structure, substructure, and metallicity of M31s halo. Although most of our spectroscopic targets were photometrically screened to reject foreground Milky Way dwarf star contaminants, the latter class of objects still constitutes a substantial fraction of the observed spectra in the sparse outer halo. Our likelihood-based method for isolating M31 red giants uses five criteria: (1) radial velocity, (2) photometry in the intermediate-width DDO51 band to measure the strength of the MgH/Mgb absorption features, (3) strength of the Na I 8190A absorption line doublet, (4) location within an (I, V-I) color-magnitude diagram, and (5) comparison of photometric (CMD-based) versus spectroscopic (Ca II 8500A triplet-based) metallicity estimates. We also discuss K I and TiO diagnostics for giant/dwarf separation that might be useful in future analyses. Training sets consisting of definite M31 red giants and Galactic dwarf stars are used to derive empirical probabilitydistribution functions for each diagnostic. These functions are used to calculate the likelihood that a given star is a red giant in M31 versus a Milky Way dwarf. By applying this diagnostic method to our spectroscopic data set, we isolate 40 M31 red giants beyond a projected distance of R = 60 kpc from the galaxys center, including three out at R ~ 165 kpc. The ability to identify individual M31 red giants gives us an unprecedented level of sensitivity in studying the properties of the galaxys outer halo.
Quickly growing computing facilities and an increasing number of extragalactic observations encourage the application of data-driven approaches to uncover hidden relations from astronomical data. In this work we raise the problem of distance reconstr uction for a large number of galaxies from available extensive observations. We propose a new data-driven approach for computing distance moduli for local galaxies based on the machine-learning regression as an alternative to physically oriented methods. We use key observable parameters for a large number of galaxies as input explanatory variables for training: magnitudes in U, B, I, and K bands, corresponding colour indices, surface brightness, angular size, radial velocity, and coordinates. We performed detailed tests of the five machine-learning regression techniques for inference of $m-M$: linear, polynomial, k-nearest neighbours, gradient boosting, and artificial neural network regression. As a test set we selected 91 760 galaxies at $z<0.2$ from the NASA/IPAC extragalactic database with distance moduli measured by different independent redshift methods. We find that the most effective and precise is the neural network regression model with two hidden layers. The obtained root-mean-square error of 0.35 mag, which corresponds to a relative error of 16%, does not depend on the distance to galaxy and is comparable with methods based on the Tully-Fisher and Fundamental Plane relations. The proposed model shows a 0.44 mag (20%) error in the case of spectroscopic redshift absence and is complementary to existing photometric redshift methodologies. Our approach has great potential for obtaining distance moduli for around 250 000 galaxies at $z<0.2$ for which the above-mentioned parameters are already observed.
We have combined observations of the Antennae galaxies from the radio interferometer ALMA (Atacama Large Millimeter/submillimeter Array) and from the optical interferometer GH$alpha$FaS (Galaxy H$alpha$ Fabry-Perot System). The two sets of observatio ns have comparable angular and spectral resolutions, enabling us to identify 142 giant molecular clouds (GMCs) and 303 HII regions. We have measured, and compared, their basic physical properties (radius, velocity dispersion, luminosity). For the HII regions, we find two physical regimes, one for masses $>10^{5.4} mathrm{M_{odot}}$ of ionized gas, where the gas density increases with gas mass, the other for masses $<10^{5.4} mathrm{M_{odot}}$ of ionized gas, where the gas density decreases with gas mass. For the GMCs, we find, in contrast to previous studies in other galaxies over a generally lower mass range of clouds, that the gas surface density increases with the radius, hinting at two regimes for these clouds if we consider both sources of data. We also find that the GMC mass function has a break at $10^{6.7}mathrm{M_{odot}}$. Using the velocity dispersion measurements, we claim that the difference between the regimes is the nature of the dominant binding force. For the regions in the lower mass range, the dominant force is the external pressure, while in the higher mass range it is the internal gravity of the clouds. In the regime where gravity is dominant, the star formation rate, derived from the dust-corrected H$alpha$ luminosity, increases super-linearly with the velocity dispersion, and the gas density increases with the gas mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا