ترغب بنشر مسار تعليمي؟ اضغط هنا

Two physical regimes for the Giant HII Regions and Giant Molecular Clouds in the Antennae Galaxies

110   0   0.0 ( 0 )
 نشر من قبل Javier Zaragoza-Cardiel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have combined observations of the Antennae galaxies from the radio interferometer ALMA (Atacama Large Millimeter/submillimeter Array) and from the optical interferometer GH$alpha$FaS (Galaxy H$alpha$ Fabry-Perot System). The two sets of observations have comparable angular and spectral resolutions, enabling us to identify 142 giant molecular clouds (GMCs) and 303 HII regions. We have measured, and compared, their basic physical properties (radius, velocity dispersion, luminosity). For the HII regions, we find two physical regimes, one for masses $>10^{5.4} mathrm{M_{odot}}$ of ionized gas, where the gas density increases with gas mass, the other for masses $<10^{5.4} mathrm{M_{odot}}$ of ionized gas, where the gas density decreases with gas mass. For the GMCs, we find, in contrast to previous studies in other galaxies over a generally lower mass range of clouds, that the gas surface density increases with the radius, hinting at two regimes for these clouds if we consider both sources of data. We also find that the GMC mass function has a break at $10^{6.7}mathrm{M_{odot}}$. Using the velocity dispersion measurements, we claim that the difference between the regimes is the nature of the dominant binding force. For the regions in the lower mass range, the dominant force is the external pressure, while in the higher mass range it is the internal gravity of the clouds. In the regime where gravity is dominant, the star formation rate, derived from the dust-corrected H$alpha$ luminosity, increases super-linearly with the velocity dispersion, and the gas density increases with the gas mass.



قيم البحث

اقرأ أيضاً

We report the first results of a long term program aiming to provide accurate independent estimates of the Hubble constant (H0) using the L-sigma distance estimator for Giant extragalactic HII regions (GEHR) and HII galaxies. We have used VLT and S ubaru high dispersion spectroscopic observations of a local sample of HII galaxies, identified in the SDSS DR7 catalogue in order to re-define and improve the L(Hbeta)-sigma distance indicator and to determine the Hubble constant. To this end we utilized as local calibration or `anchor of this correlation, GEHR in nearby galaxies which have accurate distance measurements determined via primary indicators. Using our best sample of 69 nearby HII galaxies and 23 GEHR in 9 galaxies we obtain H0=74.3 +- 3.1 (statistical) +- 2.9 (systematic) km /s Mpc, in excellent agreement with, and independently confirming, the most recent SNe Ia based results.
We present a high spatial resolution ($approx 20$ pc) of $^{12}$CO($2-1$) observations of the lenticular galaxy NGC4526. We identify 103 resolved Giant Molecular Clouds (GMCs) and measure their properties: size $R$, velocity dispersion $sigma_v$, and luminosity $L$. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC4526 is gravitationally bound, with a virial parameter $alpha sim 1$. The mass distribution, $dN/dM propto M^{-2.39 pm 0.03}$, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size-linewidth correlation for the NGC4526 clouds, in contradiction to the expectation from Larsons relation. In general, the GMCs in NGC4526 are more luminous, denser, and have a higher velocity dispersion than equal size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density $Sigma$ of GMCs is not approximately constant as previously believed, but varies by $sim 3$ orders of magnitude. We also show that the size and velocity dispersion of GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e. $sigma_v R^{-1/2} propto Sigma^{1/2}$.
We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on t he structure, dynamics and expansion laws of these regions. Once a massive star forms in our highly structured clouds, its ionising radiation eventually stops the accretion (through filaments) toward the massive star-forming regions. The new over-pressured H,{ ormalsize II} regions push away the dense gas, thus disrupting the more massive collapse centres. Also, because of the complex density structure in the cloud, the H,{ ormalsize II} regions expand in a hybrid manner: they virtually do not expand toward the densest regions (cores), while they expand according to the classical analytical result towards the rest of the cloud, and in an accelerated way, as a blister region, towards the diffuse medium. Thus, the ionised regions grow anisotropically, and the ionising stars generally appear off-centre of the regions. Finally, we find that the hypotheses assumed in standard H,{ ormalsize II}-region expansion models (fully embedded region, blister-type, or expansion in a density gradient) apply simultaneously in different parts of our simulated H,{ ormalsize II} regions, producing a net expansion law ($R propto t^alpha$, with $alpha$ in the range of 0.93-1.47 and a mean value of $1.2 pm 0.17$) that differs from any of those of the standard models.
397 - Jorge Melnick 2019
The tight correlation between turbulence and luminosity in Giant HII Regions is not well understood. While the luminosity is due to the UV radiation from the massive stars in the ionizing clusters, it is not clear what powers the turbulence. Observat ions of the two prototypical Giant HII Regions in the local Universe, 30 Doradus and NGC604, show that part of the kinetic energy of the nebular gas comes from the combined stellar winds of the most massive stars - the cluster winds, but not all. We present a study of the kinematics of 30 Doradus based on archival VLT FLAMES/GIRAFFE data and new high resolution observations with HARPS. We find that the nebular structure and kinematics are shaped by a hot cluster wind and not by the stellar winds of individual stars. The cluster wind powers most of the turbulence of the nebular gas, with a small but significant contribution from the combined gravitational potential of stars and gas. We estimate the total mass of 30 Doradus and we argue that the region does not contain significant amounts of neutral (HI) gas, and that the giant molecular cloud 30Dor-10 that is close to the center of the nebula in projection is in fact an inflating cloud tens of parsecs away from R136, the core of the ionizing cluster. We rule out a Kolmogorov-like turbulent kinetic energy cascade as the source of supersonic turbulence in Giant HII Regions.
296 - Suman Paul 2019
A stochastic model of fragmentation of molecular clouds has been developed for studying the resulting Initial Mass Function (IMF) where the number of fragments, inter-occurrence time of fragmentation, masses and velocities of the fragments are random variables. Here two turbulent patterns of the velocities of the fragments have been considered, namely, Gaussian and Gamma distributions. It is found that for Gaussian distribution of the turbulent velocity, the IMFs are shallower in general compared to Salpeter mass function. On the contrary, a skewed distribution for turbulent velocity leads to an IMF which is much closer to Salpeter mass function. The above result might be due to the fact that strong driving mechanisms e.g. shocks, arising out of a big explosion occurring at the centre of the galaxy or due to big number of supernova explosions occurring simultaneously in massive parent clouds during the evolution of star clusters embedded into them are responsible for stripping out most of the gas from the clouds. This inhibits formation of massive stars in large numbers making the mass function a steeper one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا