ﻻ يوجد ملخص باللغة العربية
Recently it has been predicted that a spin-polarized electrical current perpendicular-to-plane (CPP) directly flowing through a magnetic element can induce magnetization switching through spin-momentum transfer. In this letter, the first observation of current-induced magnetization switching (CIMS) in exchange-biased spin-valves (ESPVs) at room temperature is reported. The ESPVs show the CIMS behavior under a sweeping dc current with a very high critical current density. It is demonstrated that a thin Ruthenium (Ru) layer inserted between a free layer and a top electrode effectively reduces the critical current densities for the CIMS. An inverse CIMS behavior is also observed when the thickness of the free layer increases.
In this work, we study magnetization switching induced by spin-orbit torque in W(Pt)/Co/NiO heterostructures with variable thickness of heavy-metal layers W and Pt, perpendicularly magnetized Co layer and an antiferromagnetic NiO layer. Using current
We demonstrate spin-orbit torque (SOT) switching of amorphous CoTb single layer films with perpendicular magnetic anisotropy (PMA). The switching sustains even the film thickness is above 10 nm, where the critical switching current density keeps almo
We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by el
We report the first demonstration of the current-induced magnetization switching in a perpendicularly magnetized A1 CoPt single layer. We show that good perpendicular magnetic anisotropy can be obtained in a wide composition range of the A1 Co1-xPtx
We report the intrinsic critical current density (Jc0) in current-induced magnetization switching and the thermal stability factor (E/kBT, where E, kB, and T are the energy potential, the Boltzmann constant, and temperature, respectively) in MgO base