ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of QCD condensates from tau-decay data

115   0   0.0 ( 0 )
 نشر من قبل Almasy Andrea
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used the latest data from the ALEPH Collaboration to extract values for QCD condensates up to dimension d=12 in the V-A channel and up to dimension d=8 in the V, A and V+A channels. Performing 2- and 3-parameter fits, we obtain new results for the correlations of condensates. The results are consistent among themselves and agree with most of the previous results found in the literature.

قيم البحث

اقرأ أيضاً

The QCD vacuum condensates in the Operator Product Expansion are extracted from the final ALEPH data on vector and axial-vector spectral functions from $tau$-decay. Weighted Finite Energy Sum Rules are employed in the framework of both Fixed Order an d Contour Improved Perturbation Theory. An overall consistent picture satisfying chirality constraints can be achieved only for values of the QCD scale below some critical value $Lambdasimeq350 {MeV}$. For larger values of $Lambda$, perturbation theory overwhelms the power corrections. A strong correlation is then found between $Lambda$ and the resulting values of the condensates. Reasonable accuracy is obtained up to dimension $d=8$, beyond which no meaningful extraction is possible.
69 - Jose Bordes 2005
The saturation of QCD chiral sum rules is reanalyzed in view of the new and complete analysis of the ALEPH experimental data on the difference between vector and axial-vector correlators (V-A). Ordinary finite energy sum rules (FESR) exhibit poor sat uration up to energies below the tau-lepton mass. A remarkable improvement is achieved by introducing pinched, as well as minimizing polynomial integral kernels. Both methods are used to determine the dimension d=6 and d=8 vacuum condensates in the Operator Product Expansion, with the results: {O}_{6}=-(0.00226 pm 0.00055) GeV^6, and O_8=-(0.0053 pm 0.0033) GeV^8 from pinched FESR, and compatible values from the minimizing polynomial FESR. Some higher dimensional condensates are also determined, although we argue against extending the analysis beyond dimension d = 8. The value of the finite remainder of the (V-A) correlator at zero momentum is also redetermined: Pi (0)= -4 bar{L}_{10}=0.02579 pm 0.00023. The stability and precision of the predictions are significantly improved compared to earlier calculations using the old ALEPH data. Finally, the role and limits of applicability of the Operator Product Expansion in this channel are clarified.
98 - Matthias Jamin 2013
Hadronic tau decays offer the possibility of determining the strong coupling alpha_s at relatively low energy. Precisely for this reason, however, good control over the perturbative QCD corrections, the non-perturbative condensate contributions in th e framework of the operator product expansion (OPE), as well as the corrections going beyond the OPE, the duality violations (DVs), is required. On the perturbative QCD side, the contour-improved versus fixed-order resummation of the series is still an issue, and will be discussed. Regarding the analysis, self-consistent fits to the data including all theory parameters have to be performed, and this is also explained in some detail. The fit quantities are moment integrals of the tau spectral function data in a certain energy window and care should be taken to have acceptable perturbative behaviour of those moments as well as control over higher-dimensional operator corrections in the OPE.
We consider a different power counting in potential NRQCD by incorporating the static potential exactly in the leading order Hamiltonian. We compute the leading relativistic corrections to the inclusive electromagnetic decay ratios in this new scheme . The effect of this new power counting is found to be large (even for top). We produce an updated value for the $eta_b$ decay to two photons. This scheme also brings consistency between the weak coupling computation and the experimental value of the charmonium decay ratio.
We present a new analysis of $alpha_s$ from hadronic $tau$ decays based on the recently revised ALEPH data. The analysis is based on a strategy which we previously applied to the OPAL data. We critically compare our strategy to the one traditionally used and comment on the main differences. Our analysis yields the values $alpha_s(m_tau^2)=0.296pm 0.010$ using fixed-order perturbation theory, and $alpha_s(m_tau^2)=0.310pm 0.014$ using contour-improved perturbation theory. Averaging these values with our previously obtained values from the OPAL data, we find $alpha_s(m_tau^2)=0.303pm 0.009$, respectively, $alpha_s(m_tau^2)=0.319pm 0.012$, as the most reliable results for $alpha_s$ from $tau$ decays currently available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا