ترغب بنشر مسار تعليمي؟ اضغط هنا

The constant-pressure molecular dynamics for finite systems and its applications

274   0   0.0 ( 0 )
 نشر من قبل Deyan Sun
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently we proposed a new constant-pressure molecular dynamics method for finite systems. In this paper, we discuss the current understanding of this method and its technique details. We also review the recent theoretical advances of nano-system under pressure by using this method.

قيم البحث

اقرأ أيضاً

We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are build on our previously developed stochastic thermost at, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems - a one dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb & Dunweg, show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Molecular dynamics simulation study based on the EAM potential is carried out to investigate the effect of pressure on the rapid solidification of Aluminum. The radial distribution function is used to characterize the structure of the Al solidified u nder different pressures. It is indicated that a high pressure leads to strong crystallization tendency during cooling.
First-principles studies often rely on the assumption of equilibrium, which can be a poor approximation, e.g., for growth. Here, an effective chemical potential method for non-equilibrium systems is developed. A salient feature of the theory is that it maintains the equilibrium limits as the correct limit. In application to molecular beam epitaxy, rate equations are solved for the concentrations of small clusters, which serve as feedstock for growth. We find that the effective chemical potential is determined by the most probable, rather than by the lowest-energy, cluster. In the case of Bi2Se3, the chemical potential is found to be highly supersaturated, leading to a high nucleus concentration in agreement with experiment.
The nested sampling algorithm has been shown to be a general method for calculating the pressure-temperature-composition phase diagrams of materials. While the previous implementation used single-particle Monte Carlo moves, these are inefficient for condensed systems with general interactions where single-particle moves cannot be evaluated faster than the energy of the whole system. Here we enhance the method by using all-particle moves: either Galilean Monte Carlo or a total enthalpy Hamiltonian Monte Carlo algorithm, introduced in this paper. We show that these algorithms enable the determination of phase transition temperatures with equivalent accuracy to the previous method at $1/N$ of the cost for an $N$-particle system with general interactions, or at equal cost when single particle moves can be done in $1/N$ of the cost of a full $N$-particle energy evaluation.
We introduce a lattice model of dimers with directional interactions as a paradigm of molecular fluids or strongly correlated Cooper pairs in electronic systems. The model supports an intermediate phase that is common to both systems. There are two d ifferent ideal glasses having no moblity since they possess zero entropy. A pairing parameter is introduced to study the geometrical distribution of holes in various phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا