ﻻ يوجد ملخص باللغة العربية
We lay the foundations for the study of relatively quasiconvex subgroups of relatively hyperbolic groups. These foundations require that we first work out a coherent theory of countable relatively hyperbolic groups (not necessarily finitely generated). We prove the equivalence of Gromov, Osin, and Bowditchs definitions of relative hyperbolicity for countable groups. We then give several equivalent definitions of relatively quasiconvex subgroups in terms of various natural geometries on a relatively hyperbolic group. We show that each relatively quasiconvex subgroup is itself relatively hyperbolic, and that the intersection of two relatively quasiconvex subgroups is again relatively quasiconvex. In the finitely generated case, we prove that every undistorted subgroup is relatively quasiconvex, and we compute the distortion of a finitely generated relatively quasiconvex subgroup.
We formulate and prove a very general relative version of the Dobrushin-Lanford-Ruelle theorem which gives conditions on constraints of configuration spaces over a finite alphabet such that for every absolutely summable relative interaction, every tr
For n>3 we study spaces obtained from finite volume complete real hyperbolic n-manifolds by removing a compact totally geodesic submanifold of codimension two. We prove that their fundamental groups are relative hyperbolic, co-Hopf, biautomatic, resi
We study the large scale geometry of the relative free splitting complex and the relative complex of free factor systems of the rank $n$ free group $F_n$, relative to the choice of a free factor system of $F_n$, proving that these complexes are hyper
We prove that the generalised Fibonacci group F(r,n) is infinite for (r,n) in {(7 + 5k,5), (8 + 5k,5)} where k is greater than or equal to 0. This together with previously known results yields a complete classification of the finite F(r,n), a problem
This paper is devoted to the computation of the space $H_b^2(Gamma,H;mathbb{R})$, where $Gamma$ is a free group of finite rank $ngeq 2$ and $H$ is a subgroup of finite rank. More precisely we prove that $H$ has infinite index in $Gamma$ if and only i