ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Swift-XRT positions of GRBs

148   0   0.0 ( 0 )
 نشر من قبل Philip Evans
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since GRBs fade rapidly, it is important to publish accurate, precise positions at early times. For Swift-detected bursts, the best promptly available position is most commonly the X-ray Telescope (XRT) position. We present two processes, developed by the Swift team at Leicester, which are now routinely used to improve the precision and accuracy of the XRT positions reported by the Swift team. Both methods, which are fully automated, make use of a PSF-fitting approach which accounts for the bad columns on the CCD. The first method yields positions with 90% error radii <4.4 90% of the time, within 10--20 minutes of the trigger. The second method astrometrically corrects the position using UVOT field stars and the known mapping between the XRT and UVOT detectors, yielding enhanced positions with 90% error radii of <2.8 90% of the time, usually ~2 hours after the trigger.

قيم البحث

اقرأ أيضاً

140 - M.R. Goad 2007
Here we describe an autonomous way of producing more accurate prompt XRT positions for Swift-detected GRBs and their afterglows, based on UVOT astrometry and a detailed mapping between the XRT and UVOT detectors. The latter significantly reduces the dominant systematic error -- the star-tracker solution to the World Coordinate System. This technique, which is limited to times when there is significant overlap between UVOT and XRT PC-mode data, provides a factor of 2 improvement in the localisation of XRT refined positions on timescales of less than a few hours. Furthermore, the accuracy achieved is superior to astrometrically corrected XRT PC mode images at early times (for up to 24 hours), for the majority of bursts, and is comparable to the accuracy achieved by astrometrically corrected X-ray positions based on deep XRT PC-mode imaging at later times (abridged).
140 - P.A. Evans 2007
Context. Swift data are revolutionising our understanding of Gamma Ray Bursts. Since bursts fade rapidly, it is desirable to create and disseminate accurate light curves rapidly. Aims. To provide the community with an online repository of X-ray lig ht curves obtained with Swift. The light curves should be of the quality expected of published data, but automatically created and updated so as to be self-consistent and rapidly available. Methods. We have produced a suite of programs which automatically generates Swift/XRT light curves of GRBs. Effects of the damage to the CCD, automatic readout-mode switching and pile-up are appropriately handled, and the data are binned with variable bin durations, as necessary for a fading source. Results. The light curve repository website (http://www.swift.ac.uk/xrt_curves) contains light curves, hardness ratios and deep images for every GRB which Swifts XRT has observed. When new GRBs are detected, light curves are created and updated within minutes of the data arriving at the UK Swift Science Data Centre.
The 4th IBIS/ISGRI survey lists 723 hard X-ray sources many still unidentified. We cross-correlated the list of the sources included in the 4th IBIS catalogue with the Swift/XRT data archive, finding a sample of 20 objects for which XRT data could he lp in the search for the X-ray and hence optical counterpart and/or in the study of the source spectral and variability properties below 10 keV. Four objects (IGR J00465-4005, LEDA 96373, IGR J1248.2-5828 and IGR J13107-5626) are confirmed or likely absorbed active galaxies, while two (IGR J14080-3023 and 1RXS J213944.3+595016) are unabsorbed AGN. We find three peculiar extragalactic objects, NGC 4728 being a Narrow Line Seyfert galaxy, MCG+04-26-006 a type 2 LINER and PKS 1143-693 probably a QSO; furthermore, our results indicate that IGR J08262+4051 and IGR J22234-4116 are candidate AGN, which require further optical spectroscopic follow-up observations to be fully classified. In the case of 1RXS J080114.6-462324 we are confident that the source is a Galactic object. For IGR J10447-6027, IGR J12123-5802 and IGR J20569+4940 we pinpoint one X-ray counterpart, although its nature could not be assessed despite spectral and sometimes variability information being obtained. Clearly, we need to perform optical follow-up observations in order to firmly assess their nature. There are five objects for which we find no obvious X-ray counterpart (IGR J07506-1547 and IGR J17008-6425) or even no detection (IGR J17331-2406, IGR J18134-1636 and IGR J18175-1530); apart from IGR J18134-1636, all these sources are found to be variable in the IBIS energy band, therefore it is difficult to catch them even in X-rays.
121 - R. Landi 2013
With respect to the recent INTEGRAL/IBIS 9-year Galactic Hard X-ray Survey (Krivonos et al. 2012), we use archival Swift/XRT observations in conjunction with multi-wavelength information to discuss the counterparts of a sample of newly discovered obj ects. The X-ray telescope (XRT, 0.3-10 keV) on board Swift, thanks to its few arcseconds source location accuracy, has been proven to be a powerful tool with which the X-ray counterparts to these IBIS sources can be searched for and studied. In this work, we present the outcome of this analysis by discussing four objects (SWIFT J0958.0-4208, SWIFT J1508.6-4953, IGR J17157-5449, and IGR J22534+6243) having either X-ray data of sufficient quality to perform a reliable spectral analysis or having interesting multiwaveband properties. We find that SWIFT J1508.6-4953 is most likely a Blazar, while IGR J22534+6243 is probably a HMXB. The remaining two objects may be contaminated by nearby X-ray sources and their class can be inferred only by means of optical follow-up observations of all likely counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا