ﻻ يوجد ملخص باللغة العربية
Context. Swift data are revolutionising our understanding of Gamma Ray Bursts. Since bursts fade rapidly, it is desirable to create and disseminate accurate light curves rapidly. Aims. To provide the community with an online repository of X-ray light curves obtained with Swift. The light curves should be of the quality expected of published data, but automatically created and updated so as to be self-consistent and rapidly available. Methods. We have produced a suite of programs which automatically generates Swift/XRT light curves of GRBs. Effects of the damage to the CCD, automatic readout-mode switching and pile-up are appropriately handled, and the data are binned with variable bin durations, as necessary for a fading source. Results. The light curve repository website (http://www.swift.ac.uk/xrt_curves) contains light curves, hardness ratios and deep images for every GRB which Swifts XRT has observed. When new GRBs are detected, light curves are created and updated within minutes of the data arriving at the UK Swift Science Data Centre.
We have computed the luminosity rest frame light curves of the first 40 Gamma-ray bursts (GRBs) detected by Swift with well established redshift. We studied average properties of the light curves in the four subsamples of bursts given by z<1, 1<z<2,
Since GRBs fade rapidly, it is important to publish accurate, precise positions at early times. For Swift-detected bursts, the best promptly available position is most commonly the X-ray Telescope (XRT) position. We present two processes, developed b
We present ultravioliet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types
During the pre-Swift era, a clustering of light curves was observed in the X-ray, optical and infrared afterglow of gamma-ray bursts. We used a sample of 254 GRB X-ray afterglows to check this fact in the Swift era. We corrected fluxes for distance,