In this paper, we study a series of $L^2$-torsion invariants from the viewpoint of the mapping class group of a surface. We establish some vanishing theorems for them. Moreover we explicitly calculate the first two invariants and compare them with hyperbolic volumes.
We calculate the abelianizations of the level $L$ subgroup of the genus $g$ mapping class group and the level $L$ congruence subgroup of the $2g times 2g$ symplectic group for $L$ odd and $g geq 3$.
We calculate the first homology group of the mapping class group with coefficients in the first rational homology group of the universal abelian $Z / L Z$-cover of the surface. If the surface has one marked point, then the answer is $Q^{tau(L)}$, whe
re $tau(L)$ is the number of positive divisors of $L$. If the surface instead has one boundary component, then the answer is $Q$. We also perform the same calculation for the level $L$ subgroup of the mapping class group. Set $H_L = H_1(Sigma_g;Z/LZ)$. If the surface has one marked point, then the answer is $Q[H_L]$, the rational group ring of $H_L$. If the surface instead has one boundary component, then the answer is $Q$.
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second co
homology group of the level p congruence subgroup of the mapping class group, following my papers The second rational homology group of the moduli space of curves with level structures and The Picard group of the moduli space of curves with level structures.
We give upper and lower bounds on the leading coefficients of the $L^2$-Alexander torsions of a $3$-manifold $M$ in terms of hyperbolic volumes and of relative $L^2$-torsions of sutured manifolds obtained by cutting $M$ along certain surfaces. We p
rove that for numerous families of knot exteriors the lower and upper bounds are equal, notably for exteriors of 2-bridge knots. In particular we compute the leading coefficient explicitly for 2-bridge knots.
Let $M_n$ be the connect sum of $n$ copies of $S^2 times S^1$. A classical theorem of Laudenbach says that the mapping class group $text{Mod}(M_n)$ is an extension of $text{Out}(F_n)$ by a group $(mathbb{Z}/2)^n$ generated by sphere twists. We prove
that this extension splits, so $text{Mod}(M_n)$ is the semidirect product of $text{Out}(F_n)$ by $(mathbb{Z}/2)^n$, which $text{Out}(F_n)$ acts on via the dual of the natural surjection $text{Out}(F_n) rightarrow text{GL}_n(mathbb{Z}/2)$. Our splitting takes $text{Out}(F_n)$ to the subgroup of $text{Mod}(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbachs original proof, including the identification of the twist subgroup with $(mathbb{Z}/2)^n$.