ترغب بنشر مسار تعليمي؟ اضغط هنا

Capillary filling using Lattice Boltzmann Equations: the case of multi-component fluids

82   0   0.0 ( 0 )
 نشر من قبل Fabiana Diotallevi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic study of capillary filling for a binary fluid by using mesoscopic a lattice Boltzmann model describing a diffusive interface moving at a given contact angle with respect to the walls. We compare the numerical results at changing the ratio the typical size of the capillary, H, and the wettability of walls. Numerical results yield quantitative agreement with the Washburn law in all cases, provided the channel lenght is sufficiently larger then the interface width. We also show that in the initial stage of the filling process, transient behaviour induced by inertial effects are under control in our lattice Boltzmann equation and in good agreement with the phenomenology of capillary filling. Finally, at variance with multiphase LB simulations, velocity and pressure profiles evolve under the sole effect of capillary drive all along the channel.

قيم البحث

اقرأ أيضاً

We present a systematic study of capillary filling for multi-phase flows by using mesoscopic lattice Boltzmann models describing a diffusive interface moving at a given contact angle with respect to the walls. We compare the numerical results at chan ging the density ratio between liquid and gas phases and the ratio between the typical size of the capillary and the interface width. It is shown that numerical results yield quantitative agreement with the Washburn law when both ratios are large, i.e. as the hydrodynamic limit of a infinitely thin interface is approached. We also show that in the initial stage of the filling process, transient behaviour induced by inertial effects and ``vena contracta mechanisms, may induce significant departure from the Washburn law. Both effects are under control in our lattice Boltzmann equation and in good agreement with the phenomenology of capillary filling.
Numerical simulations of two-dimensional capillary filling using the pseudo-potential lattice Boltzmann model for multiphase fluids are presented, with special emphasis on the role of finite-vapour density effects. It is shown that whenever the densi ty of the light-phase exceeds about ten percent of the dense phase, the front motion proceeds through a combined effect of capillary advection and condensation. As a result, under these conditions, the front proceeds at a higher speed as compared to the Washburn prediction. It is suggested that such an acceleration effect might be observed in experiments performed sufficiently close to critical conditions
121 - Qun Li , A.J. Wagner 2007
We present a lattice Boltzmann algorithm based on an underlying free energy that allows the simulation of the dynamics of a multicomponent system with an arbitrary number of components. The thermodynamic properties, such as the chemical potential of each component and the pressure of the overall system, are incorporated in the model. We derived a symmetrical convection diffusion equation for each component as well as the Navier Stokes equation and continuity equation for the overall system. The algorithm was verified through simulations of binary and ternary systems. The equilibrium concentrations of components of binary and ternary systems simulated with our algorithm agree well with theoretical expectations.
A lattice Boltzmann model for amphiphilic fluid dynamics is presented. It is a ternary model, in that it conserves mass separately for each chemical species present (water, oil, amphiphile), and it maintains an orientational degree of freedom for the amphiphilic species. Moreover, it models fluid interactions at the microscopic level by introducing self-consistent forces between the particles, rather than by positing a Landau free energy functional. This combination of characteristics fills an important need in the hierarchy of models currently available for amphiphilic fluid dynamics, enabling efficient computer simulation and furnishing new theoretical insight. Several computational results obtained from this model are presented and compared to existing lattice-gas model results. In particular, it is noted that lamellar structures, which are precluded by the Peierls instability in two-dimensional systems with kinetic fluctuations, are not observed in lattice-gas models, but are easily found in the corresponding lattice Boltzmann models. This points out a striking difference in the phenomenology accessible to each type of model.
We show how the capillary filling of microchannels is affected by posts or ridges on the sides of the channels. Ridges perpendicular to the flow direction introduce contact line pinning which slows, or sometimes prevents, filling; whereas ridges para llel to the flow provide extra surface which may enhances filling. Patterning the microchannel surface with square posts has little effect on the ability of a channel to fill for equilibrium contact angle $theta_e lesssim 30^{mathrm{o}}$. For $theta_e gtrsim 60^{mathrm{o}}$, however, even a small number of posts can pin the advancing liquid front.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا