ﻻ يوجد ملخص باللغة العربية
Optical supercontinuum radiation, a special kind of white light, has found numerous applications in scientific research and technology. This bright, broadband radiation can be generated from nearly monochromatic light through the cooperative action of multiple nonlinear effects. Unfortunately, supercontinuum radiation is plagued by large spectral and temporal fluctuations owing to the spontaneous initiation of the generation process. While these fluctuations give rise to fascinating behavior in the form of optical rogue waves [1], they impede many critical applications of supercontinuum. Here, we introduce, and experimentally demonstrate, a powerful means of control over supercontinuum generation by stimulating the process with a very weak optical seed signal [2]. This minute addition significantly reduces the input power threshold for the process and dramatically increases the stability of the resulting radiation. This effect represents an optical tipping point, as the controlled addition of a specialized, but extraordinarily weak perturbation powerfully impacts a much stronger optical field, inducing a drastic transition in the optical system.
Extremely large, rare events arise in various systems, often representing a defining character of their behavior. Another class of extreme occurrences, unexpected failures, may appear less important, but in applications demanding stringent reliabilit
We present a numerical study of the evolution dynamics of ``optical rogue waves, statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli et al. Nature Vol. 450, 1054-1058 (20
Numerical simulations are used to study how fiber supercontinuum generation seeded by picosecond pulses can be actively controlled through the use of input pulse modulation. By carrying out multiple simulations in the presence of noise, we show how t
We demonstrate experimentally that the spectral broadening of CW supercontinuum can be controlled by using photonic crystal fibers with two zero-dispersion wavelengths pumped by an Yb fiber laser at 1064 nm. The spectrum is bounded by two dispersive
Supercontinuum generation is a highly nonlinear process that exhibits unstable and chaotic characteristics when developing from long pump pulses injected into the anomalous dispersion regime of an optical fiber. A particular feature associated with t