ﻻ يوجد ملخص باللغة العربية
Supercontinuum generation is a highly nonlinear process that exhibits unstable and chaotic characteristics when developing from long pump pulses injected into the anomalous dispersion regime of an optical fiber. A particular feature associated with this regime is the long-tailed rogue wave-like statistics of the spectral intensity on the long wavelength edge of the supercontinuum, linked to the generation of a small number of rogue solitons with extreme red-shifts. Here, we apply machine learning to analyze the characteristics of these solitons at the edge of the supercontinuum spectrum, and show how supervised learning can train a neural network to predict the peak power, duration, and temporal delay of these solitons from only the supercontinuum spectral intensity without phase information. The network accurately predicts soliton characteristics for a wide range of scenarios, from the onset of spectral broadening dominated by pure modulation instability to near octave-spanning supercontinuum with distinct rogue solitons.
We present a numerical study of the evolution dynamics of ``optical rogue waves, statistically-rare extreme red-shifted soliton pulses arising from supercontinuum generation in photonic crystal fiber [D. R. Solli et al. Nature Vol. 450, 1054-1058 (20
In the numerical modelling of cascaded mid-infrared (IR) supercontinuum generation (SCG) we have studied how an ensemble of spectrally and temporally distributed solitons from the long-wavelength part of an SC evolves and interacts when coupled into
We present numerical results of supercontinuum (SC) generation in the mid-IR spectral region, specifically addressing the molecular fingerprint window ranging from 2.5 to 25 um. By solving the Generalized Nonlinear Schrodinger Equation (GNLSE) in a c
We use dispersive Fourier transformation to measure shot-to-shot spectral instabilities in femtosecond supercontinuum generation. We study both the onset phase of supercontinuum generation with distinct dispersive wave generation, as well as a highly
Tapered and dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are structures showing a longitudinally dependent group velocity dispersion that res